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Negative Sequence Analysis: A Review
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Negative sequential patterns (NSPs) produced by negative sequence analysis (NSA) capture more informative

and actionable knowledge than classic positive sequential patterns (PSPs) due to involving both occurring and

non-occurring items, which appear in many applications. However, the research on NSA is still at an early stage

and NSP mining involves very high computational complexity and a very large search space, there is no widely

accepted problem statement on NSP mining, and different settings on constraints and negative containment

have been proposed in existing work. Among existing NSP mining algorithms, there are no general and

systemic evaluation criteria available to assess them comprehensively. This paper conducts a comprehensive

technical review of existing NSA research. We explore and formalize a generic problem statement of NSA,

investigate, compare and consolidate the definitions of constraints and negative containment, and compare the

working mechanisms and efficiency of existing NSP mining algorithms. The review is concluded by discussing

new research opportunities in NSA.
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1 INTRODUCTION
Sequences widely appear in ordered and behavioral data, and sequence analysis is increasingly

recognized in many sequential applications including gene analysis, behavior analytics, and text

analysis [4, 8, 55]. Dominating efforts have been made on positive sequence analysis (PSA), in

particular, mining frequent positive sequential patterns (PSP) in occurring sequences [40], leading

to many PSP mining algorithms, e.g., PrefixSpan [46], SPADE [67], SPAM [3], bitSPADE [2], LAPIN

[62], IMSP [53], FAST [49] and LCMSeq [65], and closed PSP mining algorithms such as ClaSP [24],

ClosedISP [34], CloFAST [22] and FCloSM [33]. Further work is on PSP pruning to improve the

performance of PSP mining algorithms, such as CMAP [21] and DISC [18].

By contrast, negative sequence analysis (NSA), i.e., discovering important yet non-occurred

[13] sequential patterns, also called negative sequential patterns (NSP), has only received limited

attention. NSPs are patterns consisting of both occurring and non-occurring elements in sequential
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data. While rarely studied, NSA and NSP are shown useful for understanding and managing non-

occurring behavior (NOB) [13] and complicated behavior relations [6, 7], as they can disclose

additional yet usually hidden information that cannot be replaced or informed by PSPs [1, 8].

The non-occurring elements in a negative sequence stand for the absence of specific events or

actions, corresponding to important but undeclared behaviors [13], often appearing in manipulated

or undesirable behaviors [12], concerned situations [36], and business applications [14]. While

non-occurring events are usually overlooked, they could be very useful for detecting missing

health/medical treatments or health insurance claims [74, 75], undeclared fraudulent social welfare

behaviors for debt detection [15, 68–71], undeclared behaviors of taxpayers [73], manipulated

trading behaviors [9, 10, 51], pattern relation analysis [5], poor academic learning performance

[30], terrorist activities, security, and risk management, etc.

For example, in social welfare debt detection, it was found those allowance recipients who did not

claim activities: PYR, RPR, REA and STM, may likely receive overpayment paid by the government

due to the misleading information unprovided (i.e., NSP: ⌝ < PYR,RPR,REA, STM >→ DEB) [71].
More generally, in detecting insurance claim fraud, suppose Spos =< a,b, c,d > is a claim sequence

of a customer, if Sneд =< a,b, ⌝c,d > is an NSP and sup(Spos )/sup(Sneд) < min_ratio, then Spos
is likely fraudulent, since code c should be claimed together with others but it does not appear

together [72]. Here, each item a, b, c and d stands for a claim item code, sup(Spos ) and sup(Sneд)
are the supports, andmin_ratio is a predefined threshold. For the example of system diagnosis, if

some maintenance operations should be but were not conducted following certain alarms, a system

fault or even disaster may occur; while if these operations were performed in time, then alarms

would stop and no fault would occur, i.e., Sα =< a,b,o,X > and Sβ =< a,b, ⌝o,Y >. Here a and b
stand for two alarms, o stands for the conduction of maintenance operation, and X and Y stand for

no-fault and fault. Given alarms a and b are received, Sα represents a pattern that no-fault X would

occur if operation o was performed while Sβ represents that otherwise fault Y would likely occur.

However, PSP methods cannot be directly applied or adjusted to analyze the above NOB scenarios.

In addition to the hidden nature of NOB, the downward property, which forms the foundation of

PSA, does not hold in NSA. It is also far more challenging to discover NSPs even in a medium-sized

dataset with a not-too-low support threshold, because the search space of NSP mining is much

larger and its computational complexity is significantly higher than in PSP mining. In addition,

few pruning strategies are available due to the lack of downward property. As a result, only a few

algorithms have been proposed in NSA, including NSPM [36], NFSPM [38], PNSPM [37], Neg-GSP

[74] and e-NSP [8]. There is a significant gap between the wide NOB applications and very limited

research on NSA.

As NSA is fundamental and challenging, significant inconsistencies exist between existing

algorithms, with each only focusing on specific scenarios and settings. There are no unified problem

statements, constraint settings, negative containment definitions, formal representations, or NSP

formulas [8]. This has limited the theoretical development and applications of NSA compared to the

widespread NOB scenarios. The only survey in [25] only covers very limited and specific aspects in

terms of three NSP mining algorithms and three measures on limited datasets.

To address the demand of and significant gaps in existing NSA research, this paper provides a

comprehensive and systematic technical overview and survey on NSA.

• By reviewing all NSA algorithms, we propose a systematic formalization of the NSA problem,

in which NSP formulas are specified on top of formal concepts: item, element and sequence.
• By investigating different definitions of constraints, a comprehensive formalization of con-

straints is provided in terms of size constraint, frequency constraint, format constraint, and

negative element constraint.
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• Building on understanding existing definitions, negative containment is defined and formal-

ized in terms of levels such as on element, sub-sequence and super-sequence and various

containing relationships such as disjunction and conjunction.

• An empirical evaluation demonstrates the pros and cons of existing NSA algorithms and

their settings in terms of algorithm efficiency.

• Lastly, open issues and prospects for NSA research are discussed.

2 RELATEDWORK AND CHALLENGES
The following NSP algorithms have so far been reported in the literature: NSPM [36], two extended

NSPM algorithms NFSPM [38] and PNSPM [37], MSIS [44], three MSIS extensions including

MBFIFS [43], CPNFMLSP [41] and CPNFSP [42], Incremental CPNFSP [32], SpamNeg [68], PNSP

[28], Negative-GSP [74], GA-NSP [75], e-NSP [8] and three extended e-NSP algorithms SAPNSP

[39], e-msNSP [61] and e-NSPFI [26]. Below, we conduct a preliminary comparison between them

and summarize the main problems associated with these methods and technical challenges in NSA.

2.1 Categorization of Existing Methods
According to analytical objectives and settings, existing NSP mining algorithms can be roughly

categorized into four groups: format-specific NSP mining, complete NSP mining, stochastic NSP

mining, and PSP-based NSP mining.

Format-specific NSPs refer to particular types of NSPs that impose specific constraints on NSP

structures and formats. They thus generate negative sequential candidates (NSCs) in a small search

space and reduce the number of NSCs to be verified. Typical algorithms include NSPM, NFSPM,

PNSPM, MSIS, MBFIFS, CPNFMLSP and CPNFSP.

Among these algorithms, NSPM, NFSPM and PNSPM introduce a concept of location format
constraint (LFC) to generate NSCs in the format of < e1, e2, . . . , ⌝es >, where a negative element

can only appear at the end of an NSC. MSIS, MBFIFS, CPNFMLSP and CPNFSP introduce another

LFC constraint to define NSCs in the form of < e1, ⌝e2 >, <⌝e1, e2 > and <⌝e1, ⌝e2 > so that an

NSC can have only two elements and there is at most one positive element that contains all positive

items, which resembles the mining of negative association rules [20, 29, 59, 69, 71].

This category of NSP algorithms obtains NSCs by a simplified NSC generation strategy with low

computational complexity, but the algorithms are only applicable for specific applications since the

discovered NSPs are quite constrained.

The second category of NSP algorithms aims to discover the complete set of NSPs. They adjust

the existing PSP algorithms to mine all the NSPs satisfying a given threshold. Typical algorithms

include PNSP and Negative-GSP (NegGSP for short), which were both extended from GSP [52]

algorithm. Both PNSP and NegGSP adopt the NSC generation-and-testing strategy. This strategy

first adapts traditional PSP mining algorithms to generate long-length or long-size NSCs based

on mined PSPs and NSCs, and then tests whether they are interesting NSPs by calculating their

negative supports in a pass over the whole dataset.

PNSP adopts an appending-based NSC generation strategy, which generates a s-size NSC by

appending a (s-1)-size NSC or PSP with a frequent positive or negative itemset. NegGSP adopts a

joining-based strategy which generates a l-length NSC by joining a (l-1)-length seed or PSP with

another (l-1)-length seed. This category of NSP mining algorithms can discover a larger number of

NSPs, especially for long-size or long-length NSPs with wider item distribution. However, these

algorithms always consume more runtime in generating and testing enormous NSCs, and they

require more memory space to save the generated NSCs. In addition, many of the mined NSPs may

not be actionable [11, 55] since their interestingness may be too low to attract business interest.
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The third category targets highly frequent NSP mining by introducing a stochastic strategy

to NSP mining and only generating NSCs with potentially high frequency by specific operations

between selected optimal NSPs in a shrunken search space. GA-NSP is a typical stochastic NSP

mining algorithm which is built on genetic algorithm. GA-NSP calculates the dynamic fitness for

each NSC or NSP. It selects NSPs with high dynamic fitness and conducts crossover and mutation

operations on these chosen NSPs to generate NSCs, thus consuming less runtime and memory

usage during the mining process. Suffering from the characteristics of stochastic processing, these

algorithms cannot guarantee the coverage of discovered NSPs, and sometimes only a small number

of NSPs may be mined.

Lastly, PSP-based NSP mining invents a new NSA theory based on the PSP-to-NSC conversion.

This method derives NSCs and calculates the negative supports by only using the corresponding

information of discovered PSP and converts negative containment to positive containment. e-

NSP is the only algorithm proposed, which is a set theory-based algorithm that applies sequence

frequency constraint (SFreC) and strictly-negative containment. It generates NSCs by a negative

conversion strategy and calculates the strictly-negative-support of each NSC by using the support of

its maximum positive sub-sequence and 1-negative-size maximum sub-sequences. Benefiting from

avoiding testing NSCs by rescanning the dataset, e-NSP is highly efficient and scalable with small

runtime and memory usage. However, e-NSP may only discover a very small coverage of NSPs,

and long-size or long-length NSPs may be lost. Built on e-NSP, SAPNSP mines patterns through

e-NSP and proposes an interestingness measure to judge whether a mined pattern is actionable

[16]. In addition, e-msNSP extends e-NSP to mine NSP with multiple minimum supports, where

each item is associated with a minimum item support (MIS) and the minimum support threshold

for a negative sequence is calculated by the MIS value of items within this sequence. In e-msNSP, a

negative sequence is an NSP if its support is greater than its minimum support threshold, rather

than a predefined global threshold as in other algorithms. Moreover, e-NSPFI is another extension of

e-NSP to discover NSP form both frequent and some constrained infrequent PSP. Finally, HUSP-NIV

[60] mines high utility sequential patterns (HUSP) from sequential utility-based databases, also

built on e-NSP. Since HUSP-NIV introduces utility to each item and focuses on the discovery of

patterns with negative item values (NIV), it is beyond the scope of this paper.

The above categorization of existing NSP mining algorithms is summarized in Table 1 according

to the above analysis and their main research ideas, advantages and disadvantages.

In conclusion, even though research on NSP mining is attracting more and more attention

and several algorithms have already been proposed, existing work cannot address the wide NOB

applications, and further efforts in this field are required.

2.2 Technical Challenges
The above analysis of related work shows: (1) NSA is attracting increasing interest, with more

advanced theories and algorithms progressively being reported; (2) NSP mining is much more

difficult and complex than PSP mining; and (3) Existing work only discovers a partial coverage

of interesting NSPs with no universal and systematic definitions and mechanisms accepted in

the area. Despite the difficulty in obtaining non-occurring behavioral data, the main technical

challenges facing NSP research include: inconsistencies in NSA problem formalization, violation of

the downward closure property, large search space, high computational complexity, and the lack of

systematic evaluation criteria.

First, there are serious inconsistencies in the NSA definition and formalization. In contrast to PSP

mining, no widely accepted problem statement, constraint settings, and systematic definitions about

negative containment exist in the current NSA research. This reflects the much more challenging

nature of NSA. Accordingly, different algorithms aim to discover specific forms of NSPs in respective
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Table 1. Categorization of Existing NSP Mining Algorithms

Research
Category

Main Idea
Typical

Algorithm
Advantage Disadvantage

Format-specific

NSP mining

Adopt specific constraints to define in-

teresting NSPs of special formats

NSPM [36], NFSPM

[38], PNSPM [37], MSIS

[44], MBFIFS [43], CP-

NFMLSP [41], CPNFSP

[42], Incremental CP-

NFSP [32], SpamNeg

[68]

Smaller space is re-

quired to search, and

fewer NSCs are gen-

erated

NSPs against pre-

defined formula are

missed and applica-

tions are limited

Complete NSP

mining

Adopt the NSC generation-and-testing

strategy, and adapt PSP mining algo-

rithms to generate long NSCs based on

mined PSPs and NSCs

PNSP [28], NegGSP [74] Maintains the max-

imum coverage of

NSPs

Resource consumption

is large, and many dis-

covered NSPs may be

meaningless

Stochastic NSP

mining

Adopt a stochastic strategy and only

generate NSCs with potentially high

frequency by taking stochastic opera-

tions on selected optimal NSPs

GA-NSP [75] Search space is re-

duced, and the av-

erage resource con-

sumption is small

Coverage of discov-

ered NSPs cannot be

guaranteed

PSP-based NSP

mining

Convert negative containment to pos-

itive containment, and generate and

test NSPs by only using the informa-

tion of discovered PSPs

e-NSP [8], SAPNSP [39],

e-msNSP [61], e-NSPFI

[26]

Effective and scal-

able in runtime and

memory usage by

avoiding rescanning

dataset

Problem statement is

much stricter, and only

a very small coverage

of NSPs is discovered

search spaces by adopting diverse constraints. One of the reasons why different algorithms result

in divergent pattern coverage is that they adopt different definitions of negative containment. For

example, PNSP adopts a stricter definition of negative containment than NegGSP. Hence, PNSP

maintains a smaller pattern coverage than NegGSP, even though they mine PSPs in the same search

space. In addition, NSPM defines the length of sequences as the number of elements in a sequence,

while NegGSP, GA-NSP and e-NSP define the length as the total number of items in all elements of

a sequence. The definition of sequence length in NSPM is actually the definition of sequence size in

the latter algorithms. The inconsistencies and confusion require a more systematic design of NSA.

Second, NSPs do not satisfy the downward closure property as PSPs do. This means that a

super-sequence of an infrequent negative sequence may be a frequent NSP, and a sub-sequence of

a frequent NSP may also be an infrequent negative sequence. For example, Sα =< a, ⌝b, c > is a

super-sequence of Sβ =<⌝b, c >, but Sα is contained in Sγ =< b,a, c > while Sβ is not contained in

Sγ . The fact that NSP does not satisfy the downward closure property further enlarges the search

space and computational complexity.

Third, NSP mining faces a large search space and high computational complexity due to the lack

of downward closure property. Despite the existence of diverse definitions of negative containment,

a data sequence can contain many more NSCs compared with positive candidates [72]. This means

that the search space of NSP mining is much larger than that of PSP mining. A huge number of

NSCs can be generated, and the computational complexity can be much higher if an NSP algorithm

aims to maintain a large pattern coverage, such as PNSP and NegGSP. For example, for a set

of items I = {a,b, c}, data sequence S =< a,b, c > can contain at most

∑
3

k=1C
k
3
= 7 positive

candidates, but it can contain at most

∑
3

k=1(C
k
3
3
k+1) = 2916 NSCs. This requires strategies such as

adopting reasonable constraints and effective pruning to reduce the research space and improve

the performance of NSP mining algorithms. Pruning strategies can filter some invalid NSCs and

reduce the computational complexity of NSP mining. However, few efficient pruning strategies

are currently available. Applying constraints leads to a trade-off between algorithm performance

and pattern coverage but also reduces the number of NSCs generated. In practice, a well-designed
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constraint may ensure that more informative NSPs can be identified in a smaller search space,

while the corresponding theoretical analysis should be provided.

Lastly, there are no comprehensive and systematic evaluation criteria available so far. It results

in the fact that different researchers apply different methods to evaluate their work, and the nature

of behavior non-occurrences is not effectively captured and reflected in existing NSA research

and evaluation. This also makes it difficult for existing NSP mining algorithms to be effectively

validated in real-life applications.

In the following sections, we systematically review and formalize the NSA problem, with the aim

of forming a comprehensive review of existing work as well as forming a systematic theoretical

system for NSA research.

3 NSA PROBLEM STATEMENT
In this section, we introduce the basic entities required in NSA and their definitions, including item,

element, and sequence. The problem of NSP mining is then defined. The main notations used in this

paper are described in Table 2.

Table 2. Main Notations in NSA

Notation Description Notation Description
I A set of items, i.e., I = {i1, i2, . . . , in } ece ⊆ce epos Conjunction element ece is a sub-element of positive

element epos , and epos is a super-element of ece
ik The k-th item of I , 1 ⩽ k ⩽ I ′ssize ede ⊆de epos Disjunction element ede is a sub-element of positive

element epos , and epos is a super-element of ede
ik .state The state of item ik S A sequence, which is an ordered list of elements

RI (ik ) The reverse item of item ik lenдth(S ) The length of sequence S , which is the total number

of items in all elements in S
P I (ik ) The positive item partner of item ik size(S ) The size of sequence S , which is the total number of

elements in S
e An element, which is a non-empty set of I neд −

size(Sneд )
The negative size of negative sequence Sneд , which
is the number of negative elements in S

E+ The element containing all the positive items

in I
PS (Sneд ) The positive sequence partner of a negative sequence

Sneд
E−

The element containing all the negative items

in I
Sα ⊆posSβ Positive sequence Sα is a sub-sequence of positive

sequence Sβ , and Sβ is a super-sequence of Sβ
size(e) The size of element e , which is the number of

items in e
D Sequence dataset, which is a set of tuples of data se-

quences and their identifiers

neд −

size(e)
The negative size of element e , which is the

number of negative items in e
|D | The size of sequence dataset D , which is the number

of tuples in D
RE(e) The reverse element of element e SC(S ) The count of sequence S contained in D .

PE(eneд ) The positive element partner of negative ele-

ment eneд
sup(S ) The support (in percentage) of sequence of S in D

MPE(eneд ) The maximum positive element of a negative

element eneд
min_sup Theminimum support threshold predefined by a user

3.1 Item and Its Properties
The concept item is the lowest level of unit and the smallest unit in NSA. Let I be a non-empty set

of items, i.e., {i1, i2, . . . , in}, where each item ik (1 ⩽ k ⩽ n) is an atomic entity in a sequence and is

associated with a set of attributes, such as the state of an item, etc. The value of item i on attribute

A is denoted by i .A. The state of an item i , denoted as i .state , can be either positive or negative. A
negative item is represented by the symbol ⌝ in front of its corresponding positive item. An item in

a positive state is called a positive item, which represents the occurrence (appearance) of a specific
event (i.e., the item); while an item in a negative state is called a negative item, which represents

the non-occurrence (absence) of its corresponding positive item. For example, the negative item ⌝a
means that its positive item a does not appear or is absent.

The corresponding item with the opposite state of an item ik is called its reverse item (RI), denoted

as RI (ik ). For example, RI (a) =⌝a and RI (⌝a) = a. The positive item partner (PP) of a positive item
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is itself, while the positive item partner of a negative item is its reverse item, denoted as PP(ik ). For
example, PP(a) = a and PP(⌝a) = a.

3.2 Element and Its Properties
The concept element is the second lowest level in the NSA conceptual system. An element is a
non-empty subset of I , which is denoted as e = (x1,x2, . . . ,xs ),xk ∈ I , 1 ⩽ k ⩽ s . An element is a

compound entity of items and contains two attributes: state and size. The state of an element can be

also positive or negative: if an element contains positive items only, it is called a positive element;
if an element includes at least one negative item, it is called a negative element. If an element is a

negative element and is composed of negative items only, it is called a proper negative element. A
proper negative element (⌝x1, ⌝x2, . . . , ⌝xs ) can be also represented as ⌝(x1,x2, . . . ,xs ) for short,
where xk (1 ⩽ k ⩽ s) is a positive item. For instance, a proper negative element (⌝a, ⌝b, ⌝c) can be

represented as ⌝(a,b, c). The set of all positive items is called the complete positive element, denoted
as E+ = (i1, i2, . . . , in), and the set of all negative items is called the complete negative element,
denoted as E− = (⌝ii , ⌝i2, . . . , ⌝in) or E

− =⌝(i1, i2, . . . , in). It is self-evident that I = E+ ∪ E−.
If a negative element consists of both positive items and negative items, it can contain at most

one of an item and its reverse item, but cannot contain both of them. For example, (⌝a,b, ⌝c) is
allowed while (⌝a,a, ⌝c) is invalid in NSA. Items in an element are on the same level, and their

orders are not differentiated. Without loss of generality, items in the same element are sorted in

the ascending order of absolute item values, alphabetically, or per domain knowledge.

The size of an element e is the number of items in e , denoted as size(e). An element e is called
a s-size element if size(e) = s . The negative size of element e is the number of negative items in e ,
denoted as neд−size(e). An element e is called a s-neg-size element if neд−size(e) = s . For example,

if element e = (⌝a,b, ⌝c), then size(e) = 3 and neд − size(e) = 2.

Element eα = (xα1
,xα2
, . . . ,xαm ) is called a reverse element of element eβ = (xβ1 ,xβ2 , . . . ,xβn )

if size(eα ) = size(eβ ) and xαk = RI (xβk ), 1 ⩽ k ⩽ size(eα ), denoted as eα = RE(eβ ). For example,

(⌝a,b, ⌝c) is a reverse element of (a, ⌝b, c).
The positive element partner of a negative element eneд = (x1,x2, . . . ,xs ) is a positive element

consisting of all positive items and reverse items of all negative items in eneд , denoted as PE(eneд),
i.e., PE(eneд) = (x ′

1
,x ′

2
, . . . ,x ′

s ), where x
′
k = PI (xk ), 1 ⩽ k ⩽ s . For example, the positive element

partner of negative element eneд = (⌝a,b, ⌝c) is PE(eneд) = (a,b, c).
The maximum positive element of a negative element eneд = (x1,x2, . . . ,xs ) is a positive element

that consists of all positive items in eneд , denoted asMPE(eneд), i.e.,MPE(eneд) = (x ′
1
,x ′

2
, . . . ,x ′

s ),

where x ′
k ∈ E+, 1 ⩽ k ⩽ s . For example, the maximum positive element partner of negative element

eneд = (⌝a,b, ⌝c) isMPE(eneд) = (b).
The negative items in an element share certain logic relationships, which can be categorized in

terms of two inferential coupling relationships between items: conjunction coupling and disjunction
coupling [5, 9, 56, 57]. We define them below.

Coupling 1 (Conjunction Coupling). If any one reverse item of the negative items in element e
is not allowed to occur, these negative items are coupled with a conjunction relationship. e is called a
conjunction element, represented as (x1 ∧ x2 ∧ . . . ∧ xs ).

A conjunction element ece is called a sub-element of positive element epos and epos is a super-
element of ece , denoted as ece⊆ceepos , if all positive items of ece appear in epos and no reverse item

of negative items in ece appears in epos .

Example 1. A conjunction element (⌝a ∧ b∧⌝c) is a sub-element of positive element (b,d), but not
a sub-element of positive element (b, c,d), since item c occurs in (b, c,d).
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Coupling 2 (Disjunction Coupling). If the reverse items of the negative items in element e are
required not to co-occur, in other words, at least one reverse item of these negative items does not
occur, these negative items are coupled by a disjunction relationship. e is called a disjunction element,
represented as (x1 ∨ x2 ∨ . . . ∨ xs ).

A disjunction element ede is called a sub-element of positive element epos and epos is a super-
element of ede , denoted as ede⊆deepos , if all positive items of ede appear in epos and at least one

reverse item of negative items in ede does not appear in epos .

Example 2. A disjunction element (⌝a ∨ b∨⌝c) is a sub-element of positive element (b, c,d), since
items a and c do not co-occur in (b, c,d), even though item a occurs alone.

The conjunction couplings between negative items in an element specify the “AND” logical

relationships, and all negative conditions are required to be satisfied simultaneously. For example, if

a positive element epos is a super-element of a conjunction element (⌝a ∧b∧⌝c), it means that “epos
contains ⌝a” AND “epos contains b” AND “epos contains ⌝c”.By contrast, the disjunction couplings

in an element specify the “OR” logical relationship between negative items, and at least one of

these negative conditions is required to be satisfied. For example, if positive element epos is a
super-element of a disjunction element (⌝a ∨ b∨⌝c), it means that “(epos contains b)” AND “(epos
contains ⌝a” OR “epos contains ⌝c)”.If a positive element epos is a super-element of negative element

eneд , epos is also called containing eneд , denoted as eneд ⊆ epos ; otherwise denoted as eneд ⊈ epos .

3.3 Sequence and Its Properties
A sequence S is an ordered list of elements, denoted as S =< e1, e2, . . . , es >, where ej (1 ⩽ j ⩽ s)
is an element. An element e in a sequence is also called an element of a sequence, denoted as

e = (x1,x2, . . . ,xm) ∈ S,xk ∈ I , 1 ⩽ k ⩽ m. For simplicity, if only one item is contained in an

element, the brackets around it can be omitted, i.e., element ek = (x) can be represented as ek = x .
In general, in NSA, an item is only allowed to appear at most one time in an element, but it can

occur multiple times in several divergent elements of a sequence.

A sequence contains five attributes: state, length, size, width and frequency. The state of a sequence
is either positive or negative: if a sequence S =< e1, e2, . . . , es > is composed of positive elements

only, it is a positive sequence; if a sequence S contains at least one negative element, it is a negative
sequence. The length of sequence S is the total number of items in all elements in S , denoted as

lenдth(S) =
∑s

k=1 size(ek ). A sequence S is called a l-length or l-item sequence if lenдth(S) = l .
The size of sequence S is the total number of elements in S , denoted as size(S) = s . A sequence

S is called a s-size or s-element sequence if size(S) = s . In addition, the negative size of sequence
S is the number of negative elements in S , denoted as neд − size(S) = |E |,∀e ′ ∈ E, e ′ ∈ S ∪

e ′ ∩ E− , �. Moreover, the k-th element of sequence S is denoted as S[k], and the width of
sequence S is the maximum size of any element in S , denoted aswidth(S) = max

1⩽k⩽size(S )
size(S[k]).

A sequence S is called a w-width sequence if width(S) = w . For example, a negative sequence

Sneд =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c > consists of nine items, five elements, and three negative

elements, and its maximum-size element is (⌝a,b, ⌝c), which is a 3-size element. Accordingly, S
is a 9-length, 5-size, 3-neg-size and 3-width sequence, and S[3] =⌝(b,d). The positive sequence
partner of a negative sequence Sneд =< e1, e2, . . . , es > is a sequence that transforms all its

elements to their positive element partners, denoted as PS(Sneд), i.e., PS(Sneд) =< e ′
1
, e ′

2
, . . . , e ′s >

where e ′k = PS(ek ), 1 ⩽ k ⩽ s . For example, the positive sequence partner of negative sequence

Sneд =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c > is PS(Sneд) =< (a,b, c), (a, c), (b,d),a, c >.

Definition 3.1 (Sub-sequence & Super-sequence of A Positive Sequence). A positive sequence Sα =<
eα1
, eα2
, . . . , eαm > is called a sub-sequence of another positive sequence Sβ =< eβ1 , eβ2 , . . . , eβn >,
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and Sβ is called a super-sequence of Sα , denoted as Sα⊆posSβ . If ∀eαk ∈ Sα , 1 ⩽ k ⩽ size(Sα ), there
exists jk , 1 ⩽ jk ⩽ size(Sβ ) such that eαk ⊆ eβjk and 1 ⩽ j1 < j2 < . . . < jsize(Sα ) ⩽ size(Sβ ), which

also means that Sβ contains Sα .

Example 3. Given positive sequences Sα =< (a, c), c > and Sβ =< (a,b, c), (a, c), (b,d),a, c >, then
Sα⊆posSβ .

A sequence dataset is a set of binary tuples, denoted as D = {< Sid, S >}, where S is a positive

sequence and Sid is the sequence identifier of S . A sequence in the sequence dataset is called a data
sequence, and a positive element in a data sequence is called a data element. The size of sequence
dataset D is the number of binary tuples in D, denoted as |D |. The set of binary tuples which

contains sequence S is denoted as {< S >}.
The support count of S in D is the number of {< S >}, i.e., the number of data sequences in D that

contain S , which is denoted as SC(S) = |{< S >}| = |{< Sid ′, S ′ > |< Sid ′, S ′ >∈ D ∧ S⊆posS
′}|.

Furthermore, the support of S in D is the percentage of its support count with respect to the size of

the sequence dataset, denoted as sup(S) = SC(S )
|D |

.

Definition 3.2 (Positive Sequential Pattern & Negative Sequential Pattern). Given a predefined

minimum support thresholdmin_sup, a sequence S is called a frequent sequence or a sequential
pattern if the support of S is not less thanmin_sup, i.e., sup(S) ⩾ min_sup. S is called an infrequent
sequence if its support is less thanmin_sup, i.e., sup(S) < min_sup. If a sequential pattern is a positive
sequence, it is called a positive sequential pattern (PSP); if this pattern is a negative sequence, it is

called a negative sequential pattern (NSP).

Definition 3.3 (NSP Mining). Given a sequence dataset D and a minimum support threshold

min_sup predefined by users, sequential pattern mining is a process of discovering all the sequential
patterns with supports not less thanmin_sup. If the mining process only focuses on discovering

all PSPs, it is called PSP mining; if the mining process aims to discover all the sequential patterns

including PSPs and NSPs, it is called NSP mining. PSP mining is a subtask of NSP mining.

Intrinsically, NSP has different semantics from PSP. A PSP means that its elements highly likely

occur sequentially, while an NSP emphasizes that its negative elements would not occur in certain

situations. For example, given a PSP Spsp =< a,b,d > and a NSP Snsp =< a, ⌝c,d >, for a data
sequence Sdata =< e1, e2, . . . , em >, we can see that Spsp ⊆ Sdata if ∃1 ⩽ i1 ⩽ i2 ⩽ i3 ⩽ m such

that a ⊆ ei1 ,b ⊆ ei2 ,d ⊆ ei3 , while Snsp ⊆ Sdata if ∃1 ⩽ i1 ⩽ i2 ⩽ m such that a ⊆ ei1 ,d ⊆ ei2
and ∀in , (i1 < in < i2) such that c ⊈ ein . For instance, suppose Sdata =< (a, c), (b, e), (c, e), (d, f ) >,
we can see that Spsp ⊆ Sdata but Snsp ⊈ Sdata , because a ⊆ (a, c), d ⊆ (d, f ) but c ⊆ (c, e). The
formal definitions of various negative containments are investigated in Section 5, but as can be

seen from the above example, NSP mining cannot be simply considered as a sub-field of traditional

PSP mining and existing PSP mining algorithms cannot be directly applied to mining NSPs, due to

the intricate nature of negative entities.

3.4 NSP Formats
Different NSP formats and problem statements are defined in NSP mining compared to those for

PSPs, due to the much richer and more challenging nature of NSPs as discussed in Section 2.2. There

are no universal NSP formulas defined in the literature. For example, NSPM, NFSPM and PNSPM

define NSP in the form of < e1, e2, . . . , ⌝es >, where a negative element can only be located at the

end. They discover NSPs w.r.t. high support. MSIS, MBFIFS, CPNFMLSP and CPNFSP identify the

NSP in the form of < e1, ⌝e2 >, <⌝e1, e2 > or <⌝e1, ⌝e2 >, and filter invalid NSC with low support

or low interestingness. PNSP, NegGSP, GA-NSP and e-NSP mine the complete set of NSPs with
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predefined constraints, whose supports are more than the given threshold. Among these algorithms,

NFSPM and MBFIFS consider numerical attributes and introduce a fuzzy membership function to

define fuzzy support and fuzzy interestingness for filtering. Unlike these algorithms for mining

NSPs on static datasets, the Incremental CPNFSP discovers and updates NSPs on dynamic datasets.

4 CONSTRAINT SETTINGS
As discussed in Section 2.2, NSP mining involves much higher computational complexity and a

much larger search space than PSP mining, and part of the discovered NSPmay be meaningless, thus

constraints have been set at different levels and aspects to make a trade-off between computational

efficiency and pattern coverage and make NSA less costly and more feasible [72].

While existing PSP constraints can still be empowered on the positive components in NSA,

whether they can be applied to the negative components is an open issue. However, there may be

different forms of constraints, e.g., structural and logic constraint, and semantic constraints, to be

introduced on specific negative entities or aspects of NSA, which are called negative constraints.

A logic constraint C for sequential pattern mining can be considered as a boolean function C(S)
defined on a sequential pattern S . Instead, semantic constraints were used in traditional PSP mining

and frequent itemset mining, which usually represent user interest and focus on and confine the

discovered patterns to a particular subset satisfying some strong conditions [45, 66]. Existing

constraints introduced in NSP mining mainly focus on restricting the form of NSP to be mined in

order to lower the computational cost of NSP mining, which are specific to NSA. We will investigate

the potential semantic constraints of NSP mining as open issues, which are discussed in Section 7.

In this work, only the constraints adopted by existing NSP mining algorithms are summarized.

We categorize the constraint types into size constraint, frequency constraint, format constraint and
negation constraint. We review and define them below.

4.1 Size Constraint (SC)
A size constraint (SC) sets a specific restriction on the size of entities (items, elements or sequences)

and reduces the search space by avoiding testing whether some NSCs of excessive size are contained

by certain data sequences. Below, we discuss the item size constraint and element size constraint.

Constraint 1 (Item Size Constraint (ISC)). An item size constraint (ISC) is defined as follows:
A data element edata cannot contain a negative element eneд with a size larger than edata , i.e.,
eneд ⊈ edata if size(edata) < size(eneд). It is in the form of CI SC (Sneд) ≡ (|{< Siddata , Sdata > | (<
Siddata , Sdata >∈ D) ∧ (Sneд⊆Sdata) ∧ (∀edata ∈ Sdata , eneд ∈ Sneд : (eneд ∩ E− , �) ∧ (eneд ⊆

edata) s .t . size(edata) ⩾ size(eneд)}| ⩾ min_sup × |D |), where D is the sequence dataset.

Example 4. The data element edata = (a, c) cannot contain negative element eneд = (a, ⌝b, c) since
size(edata) = 2 while size(eneд) = 3.

ISC is a practical size constraint set on elements, and is adopted by NegGSP and GA-NSP [74, 75].

Since many applications only focus on the negative element whose positive element partner exists

in the sequence dataset, and since excessive negative elements are often neglected, discovering

NSPs that have excessively large elements is wasteful and futile, thus ISC can avoid testing these

uninteresting NSCs. For example, for data element edata = (a, c), only the NSCs including 3 negative
elements (a, ⌝c), (⌝a, c) and ⌝(a, c) need to be tested to discover whether they are contained by

edata if ISC is applied. Otherwise, it is necessary to test NSCs that have more negative elements,

such as (a, ⌝b, ⌝c),(a, ⌝c, ⌝d) and (a, ⌝b, ⌝c, ⌝d). The introduction of ISC leads to the loss of NSPs

that have longer elements, especially when a sequence dataset is insufficient and sparse.
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Constraint 2 (Element Size Constraint (ESC)). An element size constraint (ESC) is defined
as follows: A data sequence Sdata cannot contain and support a negative sequence Sneд with a size
larger than the data sequence, i.e., Sneд ⊈ Sdata if size(Sdata) < size(Sneд). It is in the form of
CESC (Sneд) ≡ (|{< Siddata , Sdata > | (< Siddata , Sdata >∈ D) ∧ (Sneд⊆Sdata) ∧ (size(Sdata) ⩾
size(Sneд)}| ⩾ min_sup × |D |).

Example 5. The negative sequence Sneд =< (a, c), ⌝(b,d),a, ⌝c > cannot be contained by data
sequence Sdata =< (a, c), c > since size(Sdata) = 2 while size(Sneд) = 4.

ESC is set on the hierarchy of sequences and is adopted by PNSP to prune NSCs with excessive

elements. It guarantees that the maximum size of the NSPs discovered from dataset D is size(S),
where < Sid, S >∈ D and ∀ < Sid′, S′ >∈ D, size(S′) ⩽ size(S), and maintains the upper boundary

of the search space [28]. In some applications, big-size NSPs express worthless information, while

it is very costly to search a large space to discover such NSPs. Therefore, ESC can avoid testing

uninteresting and big-size NSCs and can shrink the search space. For example, if the data sequence

Sdata =< (a, c),a >, then NSC Sneд =<⌝(a,b, c), (a, c), ⌝(b,d),a, ⌝c > means that an element does

not appear between data elements, which may be meaningless in some applications. However,

the introduction of ESC causes the loss of informative NSPs that are of large size and loses the

knowledge extracted from them.

4.2 Frequency Constraint (FC)
In contrast to size constraints which aim to avoid the testing of some NSCs and are only adopted

by a small number of algorithms, frequency constraints (FCs) reduce the search space by limiting

the scale of possible entities that constitute NSCs or generating specific NSCs. FCs are widely used

in NSP mining. Common FCs are listed below, and the reasons for their proposal are explained.

Constraint 3 (Item Freqency Constraint (IFC)). The item frequency constraint (IFC) is
defined as follows: A negative item ineд cannot appear in an NSC unless its reverse item RI (ineд)
is a frequent positive item, i.e., CI FC (SNSC ) ≡ (∀ineд ∈ eneд , eneд ∈ SNSC , sup(< RI (ineд) >) ⩾
min_sup).

Example 6. The negative sequence < (a, c), ⌝(b,d),a, ⌝c > cannot be generated as an NSC unless
all items a, b, c and d are frequent.

IFC is set on the item level and specifies that NSC cannot contain the reverse items of infrequent

positive items as negative items. Specific IFCs were adopted by NegGSP and GA-NSP [74, 75].

The IFC is introduced because, in some real-life applications, only the non-occurrence of focused

items draws attention, and the NSP related to the non-occurrence of infrequent items may be

regarded as less valuable. IFC can enable NSP mining algorithms to discover essential NSPs without

searching an unnecessary space by pruning those NSCs containing negative items whose positive

item partners are infrequent. Compared with other frequency constraints, however, the search

space of NSP mining algorithms is still quite large and a large number of NSCs can be generated.

This is because the number of possible combinations of frequent positive items and their reverse

items is still enormous, of which the reverse elements may not be frequent positive elements.

Constraint 4 (Element Freqency Constraint (EFC)). The element frequency constraint

(EFC) is defined as follows: A negative element eneд cannot appear in NSCs unless its positive element
partner PE(eneд) is a frequent positive element, i.e.,CEFC (SNSC ) ≡ (∀eneд ∈ SNSC , sup(< PE(eneд) >
) ⩾ min_sup).

Example 7. The negative element (⌝a,b, ⌝c) cannot appear in any NSC unless (a,b, c) has a greater
support than the user-given threshold, even if all three items a, b and c are frequent positive items.
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EFC is set on elements and is a stricter frequency constraint than IFC. EFC was adopted in PNSP,

NSPM, NFSPM and PNSPM, and it is introduced because sometimes only the non-occurrence of

valuable item combinations of sufficient frequency is of business interest, and EFC removes trivial

situations that occur coincidentally such as in PNSP and NSPM. NSP algorithms adopting EFC

can only discover a coverage of NSPs smaller than those adopting IFC, since they cannot generate

those NSCs consisting of the negative elements whose positive element partners are infrequent.

Constraint 5 (Element Independence & Freqency Constraint (EIFC)). The element inde-

pendence & frequency constraint (EIFC) is defined as follows: Only NSCs in the form of < e1, ⌝e2 >,
<⌝e1, e2 > and <⌝e1, ⌝e2 > can be generated as NSCs, and they can be NSPs if both elements e1 and e2
are frequent and e1 ∩ e2 = �, i.e., CEI FC (SNSC ) ≡ (size(SNSC ) = 2,neд − size(S) ⩾ 1, and ∀e1, e2 ∈
SNSC , sup(< PE(e1) >) ⩾ min_sup, sup(< PE(e2) >) ⩾ min_sup, PE(e1) ∩ PE(e2) = �).

Example 8. The negative sequence<⌝(a,b), (b, c) > cannot be generated as NSC since (a,b)∩(b, c) ,
� regardless of whether (a,b) and (b, c) are frequent.

EIFC is also set on elements and is an extension of EFC which considers the intersections between

elements, and which was adopted by MSIS, MBFIFS, CPNFMLSP, CPNFSP and Incremental CPNFSP.

EIFC-enabled algorithms mine NSPs in a far smaller search space and generate a much smaller

number of NSCs. However, it is a quite strict frequency constraint, requiring that no NSP that

denies the given formulas can be discovered. Accordingly, the pattern coverage of EIFC-based

algorithms is even smaller.

Constraint 6 (Seqence Freqency Constraint (SFreC)). The sequence frequency constraint
(SFreC) is defined as follows: A negative sequence Sneд cannot be generated as an NSC unless its positive
sequence partner is a PSP, i.e., CSFreC (Sneд) ≡ (sup(PS(Sneд)) ⩾ min_sup).

Example 9. The negative sequence < (⌝a,b, ⌝c), (a, ⌝c), ⌝(b,d),a, ⌝c > can be an NSC only if
< (a,b, c), (a, c), (b,d),a, c > is a PSP.

SFreC is set on sequences. To the best of our knowledge, SFreC is the strictest frequency constraint

proposed so far. It maintains a minimum number of generated NSCs and discover the least number

of NSPs compared to other constraints, and was adopted by SpamNeg, e-NSP and SAPNSP. SFreC is

introduced based on the hypothesis that users are only interested in the absence of certain frequent

elements, whose positive element partners appearing in NSPs should have high frequency. Though

the algorithms adopting SFreC can only discover a small coverage of NSPs because of the strictness

of SFreC, they can avoid generating a large number of NSCs and enable the use of a set theory-based

mining approach such as e-NSP, which leads to super high efficiency in NSP mining. The cost is

that algorithms adopting SFreC maintain the smallest coverage of NSPs compared to other existing

algorithms, and all the NSPs whose positive sequence partners are not PSPs are missed.

4.3 Format Constraint
In addition to frequency constraints, format constraints (ForC) are a category of constraints placed

on elements to reduce the search space by limiting the formulas of NSPs to be discovered and

avoiding the generation of NSCs that are inconsistent with the given formulas. Common format

constraints include continuity format constraint (CFC), location format constraint (LFC), and size
format constraint (SForC).

Constraint 7 (Continuity Format Constraint (CFC)). The continuity format constraint
(CFC) is defined as follows: Two or more continuous negative elements in an NSC are not allowed, i.e.,
CCFC (Sneд) ≡ (∀k : 1 ⩽ k ⩽ size(Sneд) − 1, i f Sneд[k] ∩ E− , �, then Sneд[k + 1] ∩ E− = �).
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Example 10. The negative sequence Sα =< (a,b, c), (a, c), ⌝(b,d),a, ⌝c > satisfies constraint 7
while Sβ =< (a,b, c), ⌝(a, c), ⌝(b,d),a, ⌝c > denies.

CFC specifies that adjacent negative elements are not permitted in an NSC and this is a prac-

tical format constraint introduced by most existing NSP mining algorithms, such as PNSP, Neg-

GSP, GA-NSP and e-NSP. The reasons why CFC is widely adopted include the following. On

one hand, if multiple adjacent negative elements are allowed in an NSP, a potentially infinite

number of NSCs will be generated and tested even in a small dataset, which will lead to ex-

tremely high computational complexity. For example, a data sequence < (a,b, c), (a) > can support

NSCs in the form of < (a,b, c), ⌝(a, c), ⌝(b,d),a, ⌝c >, < (a,b, c), ⌝(a, c), ⌝(a, c), ⌝(b,d),a, ⌝c > and

< (a,b, c), ⌝(a, c), . . . , ⌝(a, c), ⌝(b,d),a, ⌝c >. On the other hand, if adjacent negative elements exist

in an NSC, their ordering is sophisticated for many applications, and it would be quite difficult

to distinguish the correct order of those negative elements if no positive elements exist between

them. For example, the negative sequence Sβ specifies that neither (a, c) nor (b,d) appears between
elements (a,b, c) and a. However, it is quite unclear whether element (a, c) does not occur before
(b,d) or after (b,d). In fact, Sβ may be also represented as < (a,b, c), ⌝(a,b, c,d),a, ⌝c >, which also

means that none of a,b,c or d occurs between (a,b, c) or a. Therefore, Sβ may be meaningless in

some applications, and CFC can avoid generating invalid NSCs to reduce the search space.

However, for some applications, sliding windows may be defined to distinguish the periods in

which elements may occur or may not occur [72]. NSPs containing consecutive negative elements

may be quite informative but they cannot be discovered under CFC. For example, in amedical service,

Sγ =< (a,b, c), ⌝(a, c), ⌝(b,d),a,X > specifies that, if a series of treatments (a,b, c) are undertaken
in the first week, the treatment (a, c) are not taken in the second week, and the treatments (b,d)
are not taken in the third week, then the outcome X appears after another treatment a is taken. By

contrast, the treatment sequence Sδ =< (a,b, c), ⌝(b,d), ⌝(a, c),a,Y > specifies that if the treatment

combination (b,d) is not taken in the second week and the treatment combination (a, c) is not taken
in the third week, then the outcome Y appears. If both Sγ and Sδ are NSPs, then the non-occurring

order of ⌝(a, c) and ⌝(b,d) may be associated with the outcomes of medical treatments.

Constraint 8 (Location Format Constraint (LFC)). The location format constraint (LFC) is
defined as follows: Negative elements can only appear in certain locations of an NSC.

An example of LFC is that negative elements can only be located at the end of a sequence, and

NSCs can only be in the form of < e1, e2, . . . , ⌝es > where ek ⊆ E+, 1 ⩽ k ⩽ s . Such LFCs were

adopted by NSPM, NFSPM and PNSPM, and emphasize the relationships between the preceding

sub-sequence < e1, e2, . . . , es−1 > and the target sub-sequence <⌝es >. For example, the negative

sequence < (a,b, c), (a, c), (b,d),a, ⌝c > is valid while < (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c > is invalid.

Another widely adopted LFC is that there can be only two elements in an NSC and all positive

items can only be included in a positive element at the beginning or end of an NSC. This LFC

is adopted by MSIS, MBFIFS, CPNFMLSP, CPNFSP and Incremental CPNFSP. For example, the

negative sequences <⌝(a, c), (b,d) > and < (a, c), ⌝(b,d) > are valid while < (⌝a, c), (b, ⌝d) > is

invalid. LFC causes algorithms to generate fewer NSCs, which is only concerned by application

requirements. However, any NSPs containing negative elements in undefined locations are lost and

result in a significantly smaller coverage.

Constraint 9 (Size Format Constraint (SForC)). The size format constraint (SForC) is defined
as follows: Each negative element in NSCs is composed of only one negative item, i.e., CSForC (Sneд) ≡
(∀k : 1 ⩽ k ⩽ size(Sneд), i f Sneд[k] ∩ E− , �, then size(Sneд[k + 1]) = 1).

Example 11. The negative sequence <⌝a, (a, c),b,a, ⌝c > satisfies Constraint 9 while < (⌝a,b, ⌝c),
(a, c), ⌝(b,d),a, ⌝c > is invalid.
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SForC is adopted by SpamNeg [68]. Because of the strictness of SForC, algorithms with SForC can

avoid generating a large number of NSCs and maintain a small search space. However, they can only

cover a small proportion of the full pattern set, and the NSPs containing negative elements with

multiple negative items cannot be mined. Adopting a rational LFC or SForC can reduce the number

of NSCs and can ensure that algorithms focus only on discovering interesting NSPs. However, this

may also cause the loss of informative NSPs which reject the adopted format constraints.

4.4 Negative Element Constraint (NEC)
The negative element constraint (NEC) is set on elements and prunes invalid NSCs by formulating

the composition of a negative element.

Constraint 10 (Negative Element Constraint (NEC)). An NEC is defined as follows: The
smallest negative unit in an NSC is required to be an element; if an element consists of more than one
item, either all or none of these items are allowed to be negative, i.e., CNEC (Sneд) ≡ (∀k : 1 ⩽ k ⩽
size(Sneд), i f Sneд[k] ∩ E∗ , �, then Sneд[k] ∩ (E − E∗) = �), where E∗ ∈ {E+,E−}.

Example 12. The negative sequence < (a,b), ⌝(c,d) > satisfies Constraint 10 while Sα =<
(⌝a,b), (c, ⌝d) > and Sβ =< (a,b), (⌝c,d) > does not.

NEC is widely introduced into NSP mining algorithms such as NegGSP, GA-NSP, e-NSP and

SAPNSP. NEC is introduced to reduce the search space and lower the computational complexity by

avoiding handling improper NSCs, especially for mining NSP in a dense dataset. However, improper

NSPs may be quite informative for some applications. In the above case, whether item a co-occurs

with b if Sα and Sβ are both NSPs results in absolutely different consequences. Algorithms with

NEC cannot capture this knowledge. Therefore, NSP mining algorithms with a loose NEC can

deliver more informative results, allowing the improper negative elements of NSPs to be discovered.

Among the constraints listed above, size constraint are support-related, i.e., they are applied to

confine how a data sequence contains a pattern. The sequence dataset is required to be examined

once in order to validate whether a pattern can satisfy size constraint. With regard to other con-

straints, whether the constraints are satisfied can be determined only be the patterns themselves,

without considering the sequence dataset to which these patterns are applied.

Table 3 summarizes the constraint settings and their relevant constraint type, hierarchy, defini-

tions, and pros and cons with respect to existing NSP algorithms.

Table 3. Constraint Settings in Existing NSP Algorithms

Type Entity Constraint Definition Advantage Disadvantage Algorithm

SC Element ISC

Data element edata can-

not contain negative el-

ement eneд whose size

is larger than the data

element, i.e., eneд ⊈
edata if size(edata ) <
size(eneд )

Avoid testing NSCs

with elements of ex-

cessive size

Missing the NSPs

with longer ele-

ments, especially

for insufficient and

sparse sequence

datasets

NegGSP [74], GA-

NSP [75]

Sequence ESC

Data sequence Sdata
cannot contain and

support negative se-

quence Sneд whose

size is larger than

the data sequence,

i.e., Sneд ⊈ Sdata
if size(Sdata ) <
size(Sneд )

Avoid testing large

NSCs

Missing some knowl-

edge induced from

long-size NSPs

PNSP [28]
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Table 3. Constraint Settings in Existing NSP Algorithms

Type Entity Constraint Definition Advantage Disadvantage Algorithm

FreC Item IFC

A negative item cannot

appear in an NSC unless

its reverse item is a fre-

quent positive item

Avoid generating

NSCs containing

negative items

whose positive

item partners are

infrequent

Search space is

still quite large and

a large number

of NSCs can be

generated

NegGSP [74], GA-

NSP [75], e-NSPFI

[26]

Element EFC

A negative element can-

not appear in NSCs un-

less its positive element

partner is frequent

Avoid generating

NSCs that contain

negative elements

whose positive ele-

ment partners are

infrequent

Algorithmswith EFC

can only discover a

smaller coverage of

NSPs than IFC

PNSP [28], NSPM

[36], NFSPM [38],

PNSPM [37]

EIFC

Only NSCs in the

form of < e1, ⌝e2 >,

<⌝e1, e2 > and

<⌝e1, ⌝e2 > can

be NSCs, and they can

be NSPs if both e1 and

e2 are frequent and

e1 ∩ e2 = �

Lead to a much

smaller search space

and generate far

fewer NSCs

NSPs denying the

given formulas can-

not be discovered

and the coverage

with EIFC is also

smaller

MSIS [44], MBFIFS

[43], CPNFMLSP

[41], CPNFSP

[42], Incremental

CPNFSP [32]

Sequence SFreC

A negative sequence

Sneд cannot be gener-

ated as an NSC unless

its positive sequence

partner is a PSP, i.e.,

sup(PS (Sneд )) ⩾
min_sup

Avoid generating

NSCs whose positive

sequence partners

are infrequent

and enable the set

theory-based mining

approach

Maintain a small

coverage of NSPs

and ensure that

NSPs whose positive

sequence partners

are not PSPs are

missed

SpamNeg [68], e-

NSP [8], SAPNSP

[39], e-msNSP [61]

ForC Element CFC

Two or more continuous

negative elements in an

NSC are not allowed

Avoid generating

NSCs that contain

continuous negative

elements, which may

be meaningless in

some applications

Inapplicable for

applications with

sliding windows to

distinguish between

the order of elements

and may miss knowl-

edge deduced from

NSPs that contain

consecutive negative

elements

PNSP [28], Neg-

GSP [74], GA-NSP

[75], e-NSP [8],

SAPNSP [39],

e-msNSP [61],

e-NSPFI [26]

LFC

Negative elements can

only appear in certain lo-

cations of an NSC

Generate a small

number of NSCs,

which is only

concerned by appli-

cation requirements

NSPs containing neg-

ative elements in un-

defined locations are

lost and the coverage

is small

NSPM [36], NF-

SPM [38], PNSPM

[37], MSIS [44],

MBFIFS [43],

CPNFMLSP [41],

CPNFSP [42],

Incremental

CPNFSP [32]

SForC

Each negative element is

composed of only one

negative item

Avoid generating

a large number of

NSCs and maintain a

small search space

Have only a very

small coverage and

NSPs containing

negative elements

with multiple nega-

tive items cannot be

discovered

SpamNeg [68]

NEC Element NEC

The smallest negative

unit in an NSC is an

element

Reduce the search

space and lower the

computational com-

plexity by avoiding

handling improper

NSCs

Miss knowledge in-

duced from improper

NSPs

NegGSP [74], GA-

NSP [75], e-NSP

[8], SAPNSP [39],

e-msNSP [61], e-

NSPFI [26]

5 NEGATIVE CONTAINMENT
Negative containment determines whether a negative sequence can be contained and supported by

a given data sequence. With various constraints, a variety of definitions of negative containment

have been given and adopted by existing NSP mining algorithms, leading to difference in pattern
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coverage. Here, we review the key concepts for, definitions of, pruning strategies for and coupling

relationships in negative containment for NSA.

5.1 Key Concepts for Negative Containment
To clearly describe negative containment, the following relevant definitions are introduced.

Definition 5.1 (Element-id Set (EidS)). An element identifier is the order number of an element in

a sequence. Given a sequence S =< e1, e2, . . . , es >, id(ek ) = k, 1 ⩽ k ⩽ s is the element identifier

of element ek . An element-id set of S , denoted as EidS(S), is the set that includes all elements and

their identifiers, i.e., EidS(S) = {(ek , id(ek )) | ek ∈ S, 1 ⩽ k ⩽ s} = {(e1, 1), (e2, 2), . . . , (es , s)}.

The element-id set including all positive elements and their identifiers of sequence S is called

positive element-id set of S , denoted as EidS+(S). Similarly, the element-id set including all negative

elements and their identifiers of sequence S is called the negative element-id set of S , denoted as

EidS−(S). It is clear that EidS(S) = EidS+(S) ∪ EidS−(S).

Example 13. Given a sequence S =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c >, itsEidS(S) = {((⌝a,b, ⌝c), 1),
((a, c), 2), (⌝(b,d), 3), (a, 4), (⌝c, 5)},EidS+(S) = {((a, c), 2), (a, 4)} and alsoEidS−(S) = {((⌝a,b, ⌝c), 1),
(⌝(b,d), 3), (⌝c, 5)}.

Definition 5.2 (Order-preserving Sequence (OPS)). For any subsetEidS ′(S) = {(e ′
1
, id(e ′

1
)), (e ′

2
, id(e ′

2
),

. . . , (e ′m , id(e
′
m))}, 1 ⩽ m ⩽ s of EidS(S), sequence Sα =< e ′

1
, e ′

2
, . . . , e ′m > is called the order-

preserving sequence of EidS ′(S), denoted as Sα = OPS(EidS ′(S)), if for ∀e ′k , e ′k+1 ∈ Sα , 1 ⩽ k < m,

there exists id(e ′k ) < id(e ′k+1).

Example 14. In Example 13, given a subset ofEidS(S) asEidS ′(S) = {((⌝a,b, ⌝c), 1), ((a, c), 2), (a, 4)},
its OPS(EidS ′(S)) =< (⌝a,b, ⌝c), (a, c),a >.

Definition 5.3 (Sub-sequence & Super-sequence of A Sequence). The sequence Sα is called a sub-
sequence of another sequence Sβ , and Sβ is called a super-sequence of Sα , if ∃EidS ′(Sβ ) ⊆ EidS(Sβ )
such that Sα ⊆ OPS(EidS ′(Sβ )), denoted as Sα ⊆ Sβ .

Example 15. Given Sα =< (⌝a,b, ⌝c), c,a > and Sβ =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c >, EidS(Sβ )
= {((⌝a,b, ⌝c), 1), ((a, c), 2), ((b,d), 3), (a, 4), (⌝c, 5)}. Since EidS ′(Sβ ) = {((⌝a,b, ⌝c), 1), (c, 2), (a, 3)}
⊆ EidS(Sβ ) and Sα ⊆ OPS(EidS ′(Sβ )), Sα is a sub-sequence of Sβ , i.e., Sα ⊆ Sβ .

Corollary 5.4 (Sub-seqence Corollary). Given positive sequences Sα =< eα1
, eα2
, . . . , eαm >

and Sβ =< eβ1 , eβ2 , . . . , eβn > , if Sα⊆posSβ , then Sα ⊆ Sβ .

Definition 5.5 (Maximum Positive Sub-sequence (MPS)). Let Sneд be a negative sequence,

OPS(EidS+(Sneд)) is called the maximum positive sub-sequence of Sneд , denoted asMPS(Sneд).

Example 16. Given a negative sequence Sneд =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c >, its EidS+(Sneд)
= {((a, c), 2), (a, 4)}, thereforeMPS(Sneд) =< (a, c),a >

According to Definition 5.5, the maximum positive sub-sequence of a negative sequence includes

all of its positive elements.

Definition 5.6 (1-neg-size Maximum Sub-sequence). Given a negative sequence Sneд , its sub-
sequences OPS(EidS+(Sneд), eneд), where (eneд , id(eneд)) ∈ EidS−(Sneд), are called 1-neg-size max-
imum sub-sequences, denoted as 1 − neдMS(Sneд). The sub-sequence set including all 1-neg-

size maximum sub-sequences of Sneд is called 1-neg-size maximum sub-sequence set, denoted
as 1 − neдMSS(Sneд), i.e., 1 − neдMSS(Sneд) = {OPS(EidS+(Sneд), eneд) | ∀(eneд , id(eneд)) ∈

EidS−(Sneд)}.
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Example 17. In Example 16, 1 − neдMSS(Sneд) = {< (⌝a,b, ⌝c), (a, c),a >, < (a, c), ⌝(b,d),a >,
< (a, c),a, ⌝c >}.

Definition 5.7 (1-neg-item Maximum Sub-sequence). Given a negative sequence Sneд , its sub-
sequences OPS(EidS+(Sneд), e

′
neд) are called 1-neg-item maximum sub-sequences, denoted as 1 −

niMS(Sneд), if there exists (eneд , id(eneд)) ∈ EidS−(Sneд) such that MPE(eneд) = MPE(e ′neд) and
neд−size(e ′neд) = 1. The sub-sequence set including all 1-neg-itemmaximum sub-sequences of Sneд
is called a 1-neg-item maximum sub-sequence set, denoted as 1−niMSS(Sneд), i.e., 1−niMSS(Sneд) =
{OPS(EidS+(Sneд), e

′
neд)},∀e ′neд ,∃(eneд , id(eneд)) ∈ EidS−(Sneд), MPE(eneд) = MPE(e ′neд),neд −

size(e ′neд) = 1.

Example 18. In Example 16, 1 − neдMSS(Sneд) = {< (⌝a,b), (a, c),a >, < (b, ⌝c), (a, c),a >, <
(a, c), ⌝b,a >, < (a, c), ⌝d,a >, < (a, c),a, ⌝c >}.

According to Definition 5.6, for any negative sequence Sneд , neд − size(1 − neдMS(Sneд)) = 1,

MPS(Sneд) ⊆ 1 − neдMS(Sneд) and size(1 − neдMSS(Sneд)) = neд − size(Sneд).

Definition 5.8 (First Sub-sequence Ending Position (FSE)). Given a data sequence Sdata =< de1,de2,
. . . ,des > and a positive sequence Spos , if ∃k, 1 < k ⩽ s such that Spos⊆pos < de1,de2, . . . ,dek >
∧Spos⊈pos < de1,de2, . . . ,dek−1 >, then k is called the first sub-sequence ending position of Spos in
Sdata , denoted as FSE(Spos , Sdata). In particular, if Spos⊆pos < de1 >, then FSE(Spos , Sdata) = 1; if

Spos⊈posSdata , then FSE(Spos , Sdata) = 0.

Definition 5.9 (Last Sub-sequence Beginning Position (LSB)). Given a data sequence Sdata =< de1,
de2, . . . ,des > and a positive sequence Spos , if ∃k, 1 ⩽ k < s such that Spos⊆pos < dek ,dek+1, . . . ,
des > ∧Spos⊈pos < dek+1,dek+2, . . . ,des >, then k is called the last sub-sequence beginning
position of Spos in Sdata , denoted as LSB(Spos , Sdata). In particular, if Spos⊆pos < des >, then
LSB(Spos , Sdata) = s; if Spos⊈posSdata , then LSB(Spos , Sdata) = 0.

Example 19. Given a data sequence Sdata =< (a,b, c), (a, c), (b,d),a, c >, FSE(< (a, c) >, Sdata) =
1, FSE(< (a, c),a >, Sdata) = 2, FSE(< (a,d) >, Sdata) = 0, LSB(< (a, c) >, Sdata) = 2,LSB(< c >
, Sdata) = 5, LSB(< (a,d) >, Sdata) = 0.

As mentioned in Section 3, a sub-sequence may be contained by multiple sub-sequences of a

positive sequence. FSE and LSB are introduced by e-NSP to determine the exact position of a data

sequence that contains a given positive sequence for the first and last time respectively [8].

Definition 5.10 (Maximum Equivalent Element (MEE)). Given a set of items I and a data sequence

Sdata , for a positive element edata ∈ Sdata , itsmaximum equivalent element, denoted asMEE(edata),
is a negative element that contains all positive items in edata and other negative items in I − edata ,
i.e.,MEE(edata) = (i1, . . . , is ) where ∀ik ∈ MEE(edata), (ik ∈ edata) ∨ (ik ∈ E− ∩ (I − edata)).

Example 20. Given S = {a,b, c,d} and a data sequence Sdata =< (a,b, c), (a, c), (b,d),a, c >, for
element e = (a, c) ∈ Sdata ,MEE(e) = (a, ⌝b, c, ⌝d).

Definition 5.11 (Maximum Equivalent Sequence). Given a set of items I and a data sequence

Sdata =< de1, . . . ,deds >, the maximum equivalent sequence of Sdata , denoted as MES(Sdata),
is a negative sequence that transfers all elements into their maximum equivalent element, i.e.,

MES(Sdata) = (e1, . . . , eds ) where ∀ek ∈ MES(Sdata), ek = MEE(dek ).

Example 21. In Example 20,MES(Sdata) =< (a,b, c, ⌝d), (a, ⌝b, c, ⌝d), (⌝a,b, ⌝c,d), (a, ⌝b, ⌝c, ⌝d),
(⌝a, ⌝b, c, ⌝d) >.

It is worth noting that Definitions 5.10 and 5.11 are only applicable for data sequences.
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5.2 Various Definitions of Negative Containment
Based on the above concepts defined for negative containment, we discuss various definitions of

negative containment in existing NSP mining algorithms in this section. We define and formalize

these definitions in alignment with the systematic settings adopted in this paper.

Containment 1 (Negative Cover). A negative sequence Sneд =< ne1,ne2, . . . ,nens > is covered
by a data sequence Sdata =< de1,de2, . . . ,deds >, if the following two conditions are satisfied:
(1) Its maximum positive sub-sequence of Sneд is contained by Sdata , i.e.,MPS(Sneд) ⊆posSdata ;
(2) ∀nek ∈ Sneд , where (nek , id(nek )) ∈ EidS−(Sneд), 1 ⩽ k ⩽ ns , there exist integers p, q and

r , (p < q < r ) such that ∃nek−1 ⊆ dep and ∃nek+1 ⊆ der , and ∃deq such that PE(nek ) ⊈ deq .

Example 22. In Example 16, Sneд is covered by data sequences Sα =< b, (a, c), c,a > and Sβ =<
b, (a, c), c, (b,d),a > but not covered by Sγ =< b, (a, c), (b,d),a >, since element c , which PE(⌝(b,d)) ⊈
c , exists between elements (a, c) and a in both Sα and Sβ .

The concept negative cover was first introduced in [74] and also adopted in [75] to reduce the

number of generated NSCs. If a data sequence Sdata covers a negative sequence Sneд , it is also called
base-support Sneд [72], which is denoted as Sneд⊆baseSdata . The base-support count of a negative
sequence Sneд in a sequence dataset D is the number of data sequences which base-support Sneд
in D, denoted as SCbase (Sneд) = |{< Sid, S > |< Sid, S >∈ D ∧ Sneд⊆baseS}|. The base-support of
Sneд in D is the percentage of its base-support count with respect to the size of sequence dataset,

denoted as supbase (Sneд) =
SCbase (Sneд )

|D |
.

According to Containment 1, it is easy to derive Corollary 5.12: MPS Corollary.

Corollary 5.12 (MPS Corollary). Given a negative sequence Sneд , if MSP(Sneд) is not a PSP,
then supbase (Sneд) < min_sup.

Containment 2 (MPS-based Negative Containment). A negative sequence Sneд =< ne1,ne2,
. . . ,nens > is contained by a data sequence Sdata =< de1,de2, . . . ,deds >, denoted as Sneд⊆conSdata ,
if the following two conditions are satisfied:

(1) The maximum positive sub-sequence of Sneд is contained by Sdata , i.e.,MPS(Sneд) ⊆posSdata ;
(2) ∀nek ∈ Sneд , where (nek , id(nek )) ∈ EidS−(Sneд), 1 ⩽ k ⩽ ns , there exist integers p, q and

r , (p < q < r ) such that ∃nek−1 ⊆ dep and ∃nek+1 ⊆ der , and ∀deq such that PE(nek ) ⊈ deq .

Example 23. In Example 22, Sneд is only contained by Sα but not contained by Sβ and Sγ , since
element (b,d) can be found between elements (a, c) and a in both Sβ and Sγ .

The concept MPS-based negative containment was first introduced in [74] and also adopted in

[75] to judge whether a data sequence supports a negative sequence. For an NSP mining algorithm

adopting MPS-based negative containment, if a data sequence Sdata contains a negative sequence

Sneд , it is also called negative-support Sneд . The negative-support count of a negative sequence Sneд in
a sequence dataset D is the number of data sequences which negative-support Sneд in D, denoted as
SCcon(Sneд) = |{< Sid, S > |< Sid, S >∈ D ∧ Sneд⊆conS}|. The negative-support of Sneд in D is the

percentage of its negative-support count with respect to the size of the sequence dataset, denoted

as supcon(Sneд) =
SCcon (Sneд )

|D |
.

It is clear that if Sneд⊆conSdata , then Sneд⊆baseSdata and supcon(Sneд) ⩽ supbase (Sneд). In addi-

tion, Corollary 5.13 can be drawn.

Corollary 5.13 (Negative Cover Corollary). Given a negative sequence Sneд =< ne1,ne2,
. . . ,nens >, where (ne1, id(ne1)) < EidS−(Sneд) and (nens , id(nens )) < EidS−(Sneд), if supbase (Sneд) <
min_sup, then for any super-sequence S ′neд of Sneд , i.e., Sneд ⊆ S ′neд , supcon(S

′
neд) < min_sup.
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Compared with MPS-based negative containment, a number of stricter definitions of negative

containment were proposed. N-containment was proposed in [28], and a stricter containment which

we call strictly-negative containment was proposed in [8]. These are formalized as follows:

Containment 3 (N-containment). A negative sequence Sneд =< ne1,ne2, . . . ,nens > is N-
contained by a data sequence Sdata =< de1,de2, . . . ,deds >, denoted as Sneд⊆ncSdata , if the following
two conditions are satisfied:

(1) Sneд⊆conSdata ;
(2) PS(Sneд)⊈posSdata .

Example 24. Given a negative sequence Sneд =< b, ⌝(b,d),a > and two data sequences Sα =<
(b,d),a, c > and Sβ =< (a,b, c), (b,d),a, c >, then Sneд is N-contained by Sα but not N-contained by
Sβ , since PS(Sneд) =< b, (b,d),a > ⊆posSβ

Similar to the definition of MPS-based negative containment, the N-containment support count of
a negative sequence Sneд in a sequence dataset D is the number of data sequences which N-contain
Sneд in D, denoted as SCnc (Sneд) = |{< Sid, S > |< Sid, S >∈ D ∧ Sneд⊆ncS}|. The N-containment
support of Sneд in D is the percentage of its N-containment support count with respect to the size of

the sequence dataset, denoted as supnc (Sneд) =
SCnc (Sneд )

|D |
.

Comparing Containment 3 with Containment 2 for negative sequence Sneд and data sequence

Sdata , if Sneд⊆ncSdata , then Sneд⊆conSdata . However, if Sneд⊆conSdata , Sneд may not beN-contained
by Sdata . For instance, in Example 24, Sneд⊆conSβ but Sneд⊈ncSβ .
In addition to Containment 3, Lin et al proposed a similar representation, here called N-end-

containment, and adopted it in [36–38] to fit their problem statement of NSP mining. Their work

focuses on discovering NSPs which contain negative elements only at the end of a negative sequence,

hence their adopted containment can be specified as follows.

Containment 4 (N-end-containment). A negative sequence Sneд =< e1, e2, . . . , es >, where
(ek , id(ek )) ∈ EidS+(Sneд), 1 ⩽ k < s and (es , id(es )) ∈ EidS−(Sneд), is N-end-contained by a data
sequence Sdata , denoted as Sneд⊆necSdata , if

(1) PS(Sneд) =< e1, e2, . . . , PE(es ) > ⊈posSdata , and
(2) its positive sub-sequence < e1, e2, . . . , es−1 > ⊆posSdata , i.e,MPS(Sneд)⊆posSdata .

Example 25. Given a negative sequence Sneд =< b, ⌝d > and two data sequences Sα =< (a, c), (b,d),
a, c > and Sβ =< (a,b, c), (a, c), (b,d),a, c >, then Sneд is N-end-contained by Sα but not N-end-
contained by Sβ , since PS(Sneд) =< b,d > ⊆posSβ

It is clear that Containment 3 satisfies the above Containment 4, but Containment 2 does not.

For instance, in Example 25, Sneд⊆conSβ since element b ⊆ (b,d) and element (d ⊈ a) ∧ (d ⊈ c).
However, Sneд⊈scSβ since FSE(MPS(Sneд), Sβ ) = 1 and element d ⊆ (b,d), and Sneд⊈necSβ since

PS(Sneд) =< b,d > ⊆posSβ and d ⊆ (b,d).

Containment 5 (Strictly-negative Containment). An m-neg-size negative sequence Sneд =<
ne1,ne2, . . . ,nens > is strictly-negative-contained by a data sequence Sdata =< de1,de2, . . . ,deds >,
denoted as Sneд⊆scSdata , if (1) ns = 1 andm = 1, PS(Sneд)⊈posSdata ; otherwise (2) ∀(nek , id(nek )) ∈
EidS−(Sneд), 1 ⩽ k ⩽ m, one of the following three conditions is satisfied:

(1) (lsb = 1) or (lsb > 1 ∧ PE(e1) ⊈< de1, . . . ,delsb−1 >), when k = 1;
(2) (f se = ds) or (0 < f se < ds ∧ PE(nens ) ⊈< def se+1, . . . ,deds >), when k = ns ;
(3) (f se > 0 ∧ lsb = f se + 1) or (f se > 0 ∧ lsb > f se + 1 ∧ PE(nek ) ⊈< def se+1, . . . , delsb−1 >),

when 1 < k < ns , where f se = FSE(MPS(< ne1,ne2, . . . ,nek−1 >), Sdata) and lsb = LSB(MPS(<
nek+1, . . . ,nens >), Sdata);
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Example 26. Given a data sequence Sdata =< (a,b, c), (a, c), (b,d),a, c >, and then (1) for Sns1 =<
⌝a,b,d >, we have Sns1⊆scSdata since EidS−(Sns1) = (⌝a, 1) and lsb = 1; (2) for Sns2 =< d, c, ⌝a >, we
have Sns2⊆scSdata since EidS−(Sns2) = (⌝a, 3) and f se = 5; and (3) for Sns3 =< (a, c), ⌝b,d, ⌝c,a >,
we have Sns3⊆scSdata . Because EidS−(Sns3) = (⌝b, 2), (⌝c, 4), for (⌝b, 2), we have f se = 1, f sb = 3

and PE(⌝b) ⊈< (a, c) >; and for (⌝c, 4), we have f se = 3, f sb = 4 and (f se > 0 ∧ lsb = f se + 1).

For the NSP mining algorithm adopting the above strictly-negative containment concept, if a data
sequence Sdata strictly-negative-contains a negative sequence Sneд , it is also called strictly-negative-
support Sneд , and the strictly-negative-support count of a negative sequence Sneд in a sequence

dataset D is the number of data sequences which strictly-negative-support Sneд in D, denoted as

SCsc (Sneд) = |{< Sid, S > |< Sid, S >∈ D ∧ Sneд⊆scS}|. The strictly-negative-support of Sneд in D
is the percentage of its strictly-negative-support count with respect to the size of the sequence

dataset, denoted as supsc (Sneд) =
SCsc (Sneд )

|D |
.

According to Containment 5, the following Corollary 5.14 strictly-negative containment corollary
can be acquired.

Corollary 5.14 (Strictly-negative Containment Corollary). Given a negative sequence
Sneд and data sequence Sdata , if Sneд⊆scSdata , then:

(1) The maximum positive sub-sequence of Sneд is contained by Sdata , i.e.,MPS(Sneд) ⊆posSdata ;
(2) ∀nek ∈ Sneд , (nek , id(nek )) ∈ EidS−(Sneд), 1 ⩽ k ⩽ ns , ∃nek−1 ⊆ dep and nek+1 ⊆ der , then

∀deq , (p < q < r ) such that PE(nek ) ⊈ deq .

Per Corollary 5.14, if Sneд⊆scSdata , then Sneд⊆conSdata . However, if Sneд⊆conSdata , Sneд may

not be strictly contained by Sdata . For example, given Sdata =< (a, c), (b,d)(a, c),a > and Sneд =<
(a, c), ⌝(b,d),a, ⌝c >, Sneд⊆conSdata but Sneд⊈scSdata , since FSE(MPS(< (a, c) >), Sdata) = 1,

LSB(MPS(< a, ⌝c >), Sdata) = 4 and PE(⌝(b,d)) ⊆ (b,d).
Comparing Containment 5 with Containment 3, a subsequent Corollary 5.15 equivalence con-

tainment corollary is proposed and proved as follows.

Corollary 5.15 (Eqivalence Containment Corollary). Given a negative sequence Sneд
and a data sequence Sdata , if Sneд⊆scSdata , then Sneд⊆ncSdata ; and if neд − size(Sneд) = 1 and
Sneд⊆ncSdata , then Sneд⊆scSdata .

For Corollary 5.15, if neд − size(Sneд) > 1 and Sneд⊆ncSdata , then Sneд may not be strictly-

negative-contained by Sdata , which can be seen in Example 27.

Example 27. Given a negative sequence Sneд =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c > and a data
sequence Sdata =< b, (a, c),a, (b,d),a >, then Sneд⊆conSdata and Sneд⊆ncSdata but Sneд⊈scSdata .

5.3 Pruning Strategies for Negative Containment
Since NSPs do not hold the property of downward closure, pruning strategies are required to lower

the search space as well as computational complexity of NSP mining. Here we will discuss several

pruning strategies which can be widely accepted.

As can be seen from Section 5.2, if negative sequence Sneд has a base-support smaller than

thresholdmin_sup, none of its negative super-sequences can be NSPs. Therefore, the base-support

of a negative sequence can be used to judge whether a negative sequence and its negative super-

sequences need to be further generated and tested as NSCs. Pruning Strategy 1MPS pruning strategy
and Pruning Strategy 2 Cover pruning strategy are accordingly designed.

Pruning Strategy 1 (MPS Pruning Strategy). Given a negative sequence Sneд , where (ne1, id(ne1))
< EidS−(Sneд) and (nens , id(nens )) < EidS−(Sneд), ifMPS(Sneд) is not a PSP, i.e., sup(MPS(Sneд)) <
min_sup, Sneд and its negative super-sequences cannot be NSPs and can be pruned.

ACM Computing Surveys, Vol. 9, No. 4, Article 39. Publication date: February 2018.

Page 20 of 37Computing Surveys

https://mc.manuscriptcentral.com/csur



Negative Sequence Analysis: A Review 39:21

Pruning Strategy 2 (Cover Pruning Strategy). Given a negative sequence Sneд , where
(ne1, id(ne1)) < EidS−(Sneд) and (nens , id(nens )) < EidS−(Sneд), if supbase (Sneд) < min_sup, then
Sneд and its negative super-sequences cannot be NSPs and can be pruned.

However, if Pruning Strategy 2 is adopted by an NSP mining algorithm which uses a joining-

based NSC generation strategy, such as in NegGSP, it may lead to a loss of partial NSCs and a small

coverage of discovered NSPs, since a l-length NSC generated by joining-based strategy may not be a

super-sequence of its (l-1)-length seeds, especially when a disjunction coupling relationship exists in
negative elements. For example, given a negative sequence Sneд =< (a, c), ⌝(b,d) > and a sequence

dataset D = {< 1, < (a, c),b >>, < 2, < (a, c),d >>}, if the disjunction coupling relationship

exists in negative elements, it can be seen that SCcon(Sneд) = 2, supbase (< (a, c), ⌝b >) = 1 and

supbase (< (a, c), ⌝d >) = 1. Therefore, ifmin_sup = 2, both < (a, c), ⌝b > and < (a, c), ⌝b > are

pruned. According to the design of the joining operation adopted by NegGSP, NSC Sneд is generated
by <⌝(b,d) > and < (a, c), ⌝b > or < (a, c), ⌝d >, and thus Sneд cannot be generated and discovered
by NegGSP. If a sequence dataset is a dense dataset with a long data sequence, the NSP coverage of

NegGSP will be much smaller. Another example is that, for a negative sequence Sneд =< a, ⌝a,b >
and a sequence dataset D = {< 1, < a,b >>}, SCcon(Sneд) = 1, supbase (< a, ⌝a >) = 1 and

supbase (<⌝a,b >) = 0. Ifmin_sup = 1, then NSC <⌝a,b > is pruned and NSP Sneд is overlooked.
The third example is that, given a negative sequence Sneд =< a, ⌝(b,d) > and a sequence dataset

D = {< 1, < (b,d),a >>}, SCcon(Sneд) = 1, supbase (< a, ⌝b >) = 1 and supbase (<⌝(b,d) >) = 0. If

min_sup = 1, then NSC <⌝(b,d) > is pruned and NSP Sneд is overlooked.

The above three examples demonstrate that if an NSP algorithm with a joining-based NSC

generation strategy adopts Pruning Strategy 2, it may overlook some kinds of NSPs and thus

maintain smaller coverage. A similar problem may also appear in those NSP algorithms which

adopt an appending-based NSC generation strategy, such as PNSP. For example, given a negative

sequence Sneд =<⌝(b,d),a > and a sequence dataset D = {< 1, < a, (b,d) >>}, SCcon(Sneд) = 1

but supbase (<⌝(b,d) >) = 0. Since PNSP generates NSC Sneд by appending <⌝(b,d) > with a, if
min_sup = 1, then NSC <⌝(b,d) > is pruned and NSP Sneд cannot be discovered by PNSP.

The above pruning strategies 1 and 2 can be adopted by MPS-based negative containment,

N-containment and strictly-negative containment, but not by N-end-containment because of their

definition conflict.

5.4 Coupling Relationships in Negative Containment
According to the above analysis, the MPS-based negative containment defined in Containment 2

judges whether there exists at least one sub-sequence of the given data sequence that can match

all the negative elements in a negative sequence, while the strictly-negative containment concept

defined in Containment 5 judges whether all corresponding sub-sequences of a data sequence

match all negative elements.

According to Section 3, there exist two categories of inferential coupling relationships shared by

negative items in negative elements of a sequence: conjunction coupling relationships and disjunction
coupling relationships. The strictly-negative containment adopting different coupling relationships

can exhibit different properties. If a disjunction coupling relationship is adopted, the following

Corollary 5.16 can be proposed and proved.

Corollary 5.16 (Disjunctive Negative Conversion Corollary (DNC Corollary)). Given
a negative sequence Sdisneд =< ne1, . . . ,nens > and a data sequence Sdata =< de1, . . . ,deds >,
Sdisneд⊆scSdata if and only if the following two conditions hold: (1) MPS(Sdisneд)⊆posSdata ; and (2)
∀1 − neдMS(Sdisneд) ∈ 1 − neдMSS(Sdisneд), PS(1 − neдMS(Sneд))⊈posSdata .
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Corollary 5.16 judges whether a negative sequence is strictly-negative-contained by a given data

sequence from the perspective of its 1-neg-size maximum sub-sequence set, and the subsequent

Corollary 5.17 strictly-negative-support of disjunctive negative sequence can be derived fromCorollary

5.16 and used to calculate the strictly-negative-support count of a disjunctive negative sequence.

Corollary 5.17 (Strictly-negative-support of Disjunctive Negative Seqence). Given a
s-size and n-neg-size disjunctive negative sequence Sdisneд and a sequence dataset D, for ∀1−neдMSSk ∈

1 − neдMSS(Sdisneд), 1 ⩽ k ⩽ n, the strictly-negative-support count of Sdisneд in D, SCsc (S
dis
neд), can be

calculated as follows:

SCsc (S
dis
neд) = |MPS(Sdisneд) − ∪n

k=1{PS(1 − neдMSk )}| (1)

Since ∪n
k=1{PS(1 − neдMSk )}⊆pos {MPS(Sdisneд)}, Equation (1) can also be rewritten as follows:

SCsc (S
dis
neд) = |MPS(Sdisneд)| − |∪n

k=1{PS(1 − neдMSk )}|

= SC(MPS(Sdisneд)) − |∪n
k=1{PS(1 − neдMSk )}| (2)

Example 28. For a negative sequence Sdisneд =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c >,SCsc (S
dis
neд) = SC(<

b, (a, c),a >) − |{< (a,b, c), (a, c),a >} ∪ {< b, (a, c), (b,d),a >} ∪ {< b, (a, c),a, c >}|.

However, if a conjunction coupling relationship is adopted, the following Corollary 5.18 conjunc-
tive negative conversion corollary (CNC Corollary) can be proposed. Its proof is similar to the Proof

of Corollary 5.16 and we ignore it here.

Corollary 5.18 (Conjunctive Negative Conversion Corollary (CNC Corollary)). Given
a negative sequence Sconneд =< ne1,ne2, . . . ,nens > and data sequence Sdata =< de1,de2, . . . , deds >,
Sconneд⊆scSdata if and only if the following two conditions hold: (1) MPS(Sconneд)⊆posSdata ; and (2)
∀1 − niMS(Sconneд) ∈ 1 − niMSS(Sconneд), PS(1 − niMS(Sconneд))⊈posSdata .

Corollary 5.18 judges whether a negative sequence is strictly-negative-contained by a given data

sequence in terms of its 1-neg-item maximum sub-sequence set, and the subsequent Corollary 5.19

can be derived from Corollary 5.18 and used to calculate the strictly-negative-support count of a

conjunctive negative sequence.

Corollary 5.19 (Strictly-negative-support of Conjunctive Negative Seqence). Given
an s-size and n-neg-size negative sequence Sconneд and a sequence dataset D, for ∀1 − niMSSk ∈

1 − niMSS(Sconneд), 1 ⩽ k ⩽ n, the strictly-negative-support count of Sconneд in D, SCsc (S
con
neд), can be

calculated as follows:

SCsc (S
con
neд) = |MPS(Sconneд) − ∪n

k=1{PS(1 − niMSk )}| (3)

Similarly, Equation (3) can be also rewritten as follows:

SCsc (S
con
neд) = |MPS(Sconneд)| − |∪n

k=1{PS(1 − niMSk )}|

= SC(MPS(Sconneд)) − |∪n
k=1{PS(1 − niMSk )}| (4)

Example 29. For negative sequence Sconneд =< (⌝a,b, ⌝c), (a, c), ⌝(b,d),a, ⌝c >,SCsc (S
con
neд) = SC(<

b, (a, c),a >)− |{< (a,b), (a, c),a >}∪{< (b, c), (a, c),a >}∪{< b, (a, c),b,a >}∪{< b, (a, c),d,a >
} ∪ {< b, (a, c),a, c >}|.

According to the above deduction, we can analyze the difference between PSPs and data sequences

in terms of set theory. Even though both PSPs and data sequences are composed of only positive

elements, they have different meanings. Since data sequences in a dataset are collected from

business, the items absent in a data sequence reflect that they do not occur in that sequence. For
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example, if I = {a,b, c,d} and Sdata =< b, (a, c),a >, it means that items a, c and d do not occur

in the first element, b and d do not appear in the second element, and b, c and d do not appear

in the third element in Sdata . For a PSP with disjunction coupling Sdispos , Equation (5) is as follows

according to Equation (2):

SC(Sdispos ) = SCsc (MES(Sdispos )) + |∪n
k=1{PS(1 − neдMSk )}| (5)

For a PSP with conjunction coupling Sconpos , Equation (6) is as follows according to Equation (4):

SC(Sconpos ) = SCsc (MES(Sconpos )) + |∪n
k=1{PS(1 − niMSk )}| (6)

Equation (5) and Equation (6) show that the support count of a PSP captures the number of data

sequences strictly-negative-containing both its maximum equivalent sequence and all its 1-neg-size

or 1-neg-item maximum sub-sequences. This means that a PSP covers all its super-sequences

irrespective of whether any other items in I occur. In other words, an item which does not appear

in a PSP is also covered.

In addition, it can be seen that the strictly-negative-support count of a negative sequence equals

the number of data sequences which support its maximum positive sub-sequence but cannot strictly-

negative-contain any one of its 1-neg-size or 1-neg-item maximum sub-sequences. This indicates

the remaining applicability or support count difference of its maximum positive sub-sequence

because of the introduction of negative items. For example, this means that, for a negative sequence

Sneд =< (a, c), ⌝(b,d),a >, if SCsc (Sneд) = 3, three data sequences in {MPS(Sneд)} can also support

the generated negative pattern if element (b,d) cannot take place between (a, c) and a. Therefore,
after introducing negative items, the NSP mining task can discover the set of negative sequences

with significant remaining applicability.

Furthermore, the formula ratio(Sneд) = SC(PS(Sneд))/SCsc (Sneд) is an effective measure for

evaluating the abnormality of the non-occurrences of negative items in Sneд , i.e., the higher

ratio(Sneд) is, the more abnormal the non-occurring negative items are.

5.5 NSP Mining Algorithms Summary
Here we provide the theoretical analysis of the time and space complexity of five NSP mining

algorithms which are the representative ones in the four categories: NSPM, MSIS, PNSP, NegGSP

and e-NSP respectively. The basis for selecting these algorithms are explained in Section 6.1, and we

will not analyze the complexity of GA-NSP because it is a stochastic NSP mining algorithm which

is built on genetic algorithm. As discussed in [8], the performance of NSP mining algorithms can

be calculated by the data factors of applied datasets. Because the derivation process of theoretical

complexity analysis is quite space-consuming, only the final conclusion is provided here, and one

worthy example of detailed derivation can be seen in [8].

The following data factors are specified to describe the characteristic of applied dataset: C is

the average number of elements per sequence; T is the average number of items per element; S is
the average length of potentially maximal frequent positive sequences; I is the average number

of items per element in potentially maximal frequent positive sequences; and DB is the number

of data sequences in a sequence dataset. In addition, we suppose that the runtime of extending

an itemset to the end of a sequence (i.e., appending a sequence with an itemset) is t je , denote the
runtime of extending an item to the end of a sequence (i.e., appending a sequence with an item) is

t ji , the runtime of generating a new sequence based on given items is tд , the runtime of comparison

between two items is tc , the memory usage consumed by storing an item ismi , the number of

s-size PSPs is |PSPSs |, the average size of all frequent positive itemset is size(PSPS
1
). Let |NSCS

s |
alд

and S
alд
max be the number of s-size NSCs and the maximum size of all NSCs generated by algorithm
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alд respectively, while |NSCL
l |

alд
and L

alд
max be the number of l-length NSCs and the maximum

length of all NSCs generated by alд. Accordingly, the total runtime of NSPM T NSPM
and its space

usage SNSPM
can be calculated as follows:

T NSPM =
∑SNSPM

max

i=1
|NSCS

i |
NSPM

× (C ×T × DB × tc + (i − 1) × size(PSPS
1
) × tc + t je ) (7)

SNSPM =
∑SNSPM

max

i=1
|NSCS

i |
NSPM

× i × size(PSPS
1
) ×mi (8)

In addition, the runtime of MSIS TMSIS
and its space usage SMSIS

can be calculated as follows:

TMSIS =

S
I∑

i=1

⌊
i×size (PSPS

1
)

2

⌋∑
j=1

(i × size(PSPS
1
))! × (|PSPSi−1 |

2

− |PSPSi |)

j! × (i × size(PSPS
1
) − j)!

× (C ×T × DB × tc + tд) (9)

SMSIS =

S
I∑

i=1

⌊
i×size (PSPS

1
)

2

⌋∑
j=1

2 × (i × size(PSPS
1
))! × (|PSPSi−1 |

2

− |PSPSi |)

j! × (i × size(PSPS
1
) − j)!

× lenдth(IPS1) ×mi (10)

Here, lenдth(IPS1) is the average length of 1-size infrequent positive sequences. Furthermore,

the runtime of PNSP T PNSP
and its space usage SPNSP

can be calculated as follows:

T PNSP =
∑SPNSP

max

i=1
|NSCS

i |
PNSP

× (C ×T × DB × tc + t je ) (11)

SPNSP =
∑SPNSP

max

i=1
|NSCS

i |
PNSP

× i × lenдth(PNSP1) ×mi (12)

Here, lenдth(PNSP1) is the average length of all 1-size PSPs and 1-size NSPs. Moreover, the

runtime of NegGSP T NeдGSP
and its space usage SNeдGSP

can be calculated as follows:

T NeдGSP =
∑LNeдGSP

max

i=1
|NSCL

i |
NeдGSP

× (C ×T × DB × tc + (i − 1) × tc + t ji ) (13)

SNeдGSP =
∑LNeдGSP

max

i=1
|NSCL

i |
NeдGSP

× i ×mi (14)

Finally, the runtime of e-NSP T e−NSP
and its space usage Se−NSP

can be calculated as follows:

T e−NSP =

S
I∑

i=1

|PSPSi | × (

⌈ i
2
⌉∑

k=1

(i − k + 1)!

k! × (i − 2 × k + 1)!
× k × (t tran + sup(PSPSi−k+1) × ts )) (15)

Se−NSP =

S
I∑

i=1

|PSPSi | × (

⌈ i
2
⌉∑

k=1

(i − k + 1)!

k! × (i − 2 × k + 1)!
× i × size(PSPS

1
) ×mi ) (16)

Here, t tran is the runtime of transforming a positive element to its reverse element, ts is the
runtime of searching a record in a hash table, and sup(PSPSs ) is the average support count of all
s-size PSPs.

Taking the systematic technical specifications discussed in the above sections, Table 4 provides a

summary of existing NSP mining algorithms in terms of their main objectives, constraint settings,
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negative containments, advantages and disadvantages. The notations representing the advantages

and disadvantages quoted in Table 4 are defined in Table 5 and Table 6 respectively.

Table 4. Technical Design Comparison of Existing NSP Mining Algorithms

Algorithm Main Objective Constraint Containment Advantage Disadvantage
NSPM [36] (Lin et
al. 2007)

Format-specific NSP

mining

ISC,EFC, LFC,

NEC

N-end-containment Adv[1], Adv[2],

Adv[3]

Dis[1], Dis[2]

NFSPM [38] (Lin et
al. 2007)

Format-specific NSP

mining

ISC,EFC, LFC,

NEC

N-end-containment Adv[1], Adv[3] Dis[1], Dis[2]

PNSPM [37] (Lin et
al. 2008)

Format-specific NSP

mining

ISC,EFC, LFC,

NEC

N-end-containment Adv[1], Adv[3] Dis[1], Dis[2]

MSIS [44] (Ouyang

et al. 2007)
Format-specific NSP

mining

ISC, EIFC, LFC,

NEC

MPS-based Negative Con-

tainment, Strictly-Negative

Containment

Adv[1], Adv[2],

Adv[3]

Dis[1], Dis[2],

Dis[3]

MBFIFS [43]

(Ouyang et al.
2008)

Format-specific NSP

mining

ISC, EIFC, LFC,

NEC

MPS-based Negative Con-

tainment, Strictly-Negative

Containment

Adv[1], Adv[3] Dis[1], Dis[2],

Dis[3]

CPNFMLSP [41]

(Ouyang et al.
2009)

Format-specific NSP

mining

ISC, EIFC, LFC,

NEC

MPS-based Negative Con-

tainment, Strictly-Negative

Containment

Adv[1], Adv[3] Dis[1], Dis[2],

Dis[3]

CPNFSP [42]

(Ouyang et al.
2010)

Format-specific NSP

mining

ISC, EIFC, LFC,

NEC

MPS-based Negative Con-

tainment, Strictly-Negative

Containment

Adv[1], Adv[3] Dis[1], Dis[2],

Dis[3]

Incremental CPN-

FSP [32] (Khare et
al. 2013)

Format-specific NSP

mining

ISC, EIFC, LFC,

NEC

MPS-based Negative Con-

tainment, Strictly-Negative

Containment

Adv[1], Adv[3] Dis[1], Dis[2],

Dis[3]

SpamNeg [68]

(Zhao et al. 2008)
Format-specific NSP

mining

ISC, SFreC,

SForC, NEC

MPS-based Negative Con-

tainment, Strictly-Negative

Containment

Adv[1] Dis[1]

PNSP [28] (Hsueh

et al. 2008)
Complete NSP min-

ing

ISC, ESC, EFC,

CFC, NEC

N-containment Adv[4] Dis[2], Dis[4]

NegGSP [74]

(Zheng et al. 2009)
Complete NSP min-

ing

ISC, IFC, CFC,

NEC

Negative Cover, MPS-based

Negative Containment

Adv[3], Adv[4] Dis[2], Dis[5]

GA-NSP [75]

(Zheng et al. 2010)
Stochastic NSP min-

ing

ISC, IFC, CFC,

NEC

Negative Cover, MPS-based

Negative Containment

Adv[3],Adv[5] Dis[2], Dis[6],

Dis[7]

e-NSP [8] (Cao et
al. 2016)

PSP-based NSP min-

ing

ISC, SFreC, CFC,

NEC

Strictly-negative Contain-

ment

Adv[5], Adv[6],

Adv[7]

Dis[7]

SAPNSP [39] (Liu

et al. 2015)
PSP-based NSP min-

ing

ISC, SFreC, CFC,

NEC

Strictly-negative Contain-

ment

Adv[1], Adv[5],

Adv[6], Adv[7]

Dis[7]

e-msNSP [61] (Xu

et al. 2017)
PSP-based NSP min-

ing

ISC, SFreC, CFC,

NEC

Strictly-negative Contain-

ment

Adv[5], Adv[6],

Adv[7]

Dis[7]

e-NSPFI [26]

(Gong et al. 2017)
PSP-based NSP min-

ing

ISC, IFC, CFC,

NEC

Strictly-negative Contain-

ment

Adv[5], Adv[6],

Adv[7]

Dis[7]

Table 5. Advantages of NSP Mining Algorithms

Advantage Explanation Algorithm
Adv[1] Define an interestingness measure to extract

meaningful NSPs from a large number of fre-

quent NSPs

NSPM [36], NFSPM [38], PNSPM [37], MSIS [44], MBFIFS [43], CP-

NFMLSP [41], CPNFSP [42], Incremental CPNFSP [32], SpamNeg

[68], SAPNSP [39]

Adv[2] Can be extended to consider fuzzy elements to

mine negative fuzzy sequential patterns

NSPM [36], MSIS [44]

Adv[3] Avoid generating a number of redundant or in-

valid NSCs

NSPM [36], NFSPM [38], PNSPM [37], MSIS [44], MBFIFS [43], CP-

NFMLSP [41], CPNFSP [42], Incremental CPNFSP [32], NegGSP

[74], GA-NSP [75]

Adv[4] Discover the complete set of NSPs PNSP [28], NegGSP [74]

Adv[5] Effective for NSC generation GA-NSP [75], e-NSP [8], SAPNSP [39], e-msNSP [61], e-NSPFI [26]

Adv[6] Effective for calculating negative support of

NSC and avoid rescanning dataset

e-NSP [8], SAPNSP [39], e-msNSP [61], e-NSPFI [26]

Adv[7] Scalable for mining NSPs on large dataset e-NSP [8], SAPNSP [39], e-msNSP [61], e-NSPFI [26]
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Table 6. Disadvantages of NSP Mining Algorithms

Disadvantage Explanation Algorithm
Dis[1] Cannot discover NSPs against predefined formats NSPM [36], NFSPM [38], PNSPM [37], MSIS [44], MBFIFS

[43], CPNFMLSP [41], CPNFSP [42], Incremental CPN-

FSP [32], SpamNeg [68]

Dis[2] Need to scan dataset multiple times to calculate

negative-support or N-containment support of NSCs

NSPM [36], NFSPM [38], PNSPM [37], MSIS [44], MBFIFS

[43], CPNFMLSP [41], CPNFSP [42], Incremental CPN-

FSP [32], PNSP [28], NegGSP [74], GA-NSP [75]

Dis[3] Consume a large amount of memory to save infrequent

positive sequences

MSIS [44], MBFIFS [43], CPNFMLSP [41], CPNFSP [42],

Incremental CPNFSP [32]

Dis[4] Need to generate a very large number of invalid NSCs PNSP [28]

Dis[5] Ineffective in generating NSCs and needs a large num-

ber of iteration passes to generate long NSCs

NegGSP [74]

Dis[6] Need to set several rates, and no related research out-

comes for setting them properly are available

GA-NSP [75]

Dis[7] Can only discover a very small coverage of NSPs GA-NSP [75], e-NSP [8], SAPNSP [39], e-msNSP [61], e-

NSPFI [26]

Table 7. NSP Evaluation Aspects and Description

Evaluation Aspect Notation Description
NSP count Nct The number of discovered NSPs

NSP runtime Nrt Runtime consumed to discover NSPs

Total length of NSCs Tlnc The total length of the generated NSCs

6 EXPERIMENTAL ANALYSIS
In this section, the main NSP mining algorithms PNSP, NegGSP, GA-NSP, e-NSP, NSPM and MSIS

and their extended versions are selected for empirical analysis on two real-life datasets, based on

the above analysis and the evaluation criteria listed in Table 7, which are proposed to evaluate NSP

mining algorithms in terms of three evaluation aspects, NSP count, NSP runtime and Total length of
NSCs. In addition, we evaluate the influence of adopting different constraint settings and negative

containments on algorithm performance.

All the above algorithms are implemented in Java, and all experiments are conducted on a running

node with Intel Xeon W3690 (6 Core) CPU of 3.47GHz, 12GB memory and Red Hat Enterprise

Linux 6.7 (64bit) OS on the FEIT Linux Cluster at UTS. Since e-NSP can only be applied to NSP

mining with disjunction coupling and space is limited, only the experimental results and discussion

under disjunction coupling are shown in this paper.

6.1 Datasets and Algorithms to Be Compared
Two real-life sequence datasets are used for this evaluation, which are summarized as follow:

• Real-Life Dataset 1 (RL_1), is a real-life application dataset of health insurance claim sequences

[8], which has averagely 21 elements per sequence, averagely 2 items per element, 5269 data

sequences and 340 divergent items. The file size is around 5M.

• Real-Life Dataset 2 (RL_2), is a KDD-CUP 2000 dataset from SPMF, which contains 59,601

sequences of clickstream data from an e-commerce [8]. It contains 497 distinct items. The

average length of sequences is 2.42 items with a standard deviation of 3.22. In this dataset,

there are some long sequences.

Six representative NSP algorithms are evaluated in this paper because of the space limitation,

which are NSPM, MSIS, PNSP, NegGSP, GA-NSP and e-NSP. These algorithms are selected because

ACM Computing Surveys, Vol. 9, No. 4, Article 39. Publication date: February 2018.

Page 26 of 37Computing Surveys

https://mc.manuscriptcentral.com/csur



Negative Sequence Analysis: A Review 39:27

Table 8. Comparison Algorithms and Settings

Algorithm Constraint Negative Containment
PNSPwithESC ISC, ESC, EFC, CFC, NEC N-containment

PNSPwithCoverESC ISC, ESC, EFC, CFC, NEC MPS-based Negative Containment

PNSP ISC, EFC, CFC, NEC N-containment

PNSPwithCover ISC, EFC, CFC, NEC MPS-based Negative Containment

NegGSP ISC, IFC, CFC, NEC MPS-based Negative Containment

NegGSPwithFC ISC, EFC, CFC, NEC MPS-based Negative Containment

MSISwithCover ISC, EIFC, LFC, NEC MPS-based Negative Containment

MSISwithContain ISC, EIFC, LFC, NEC Strictly-Negative Containment

they represent typical and different methodologies in NSA. NSPM [36] is selected as the repre-

sentative of NSPM-based algorithms, which include NFSPM [38] and PNSPM [37], because NSPM

has a much higher number of citations and NFSPM and PNSPM focus on the discovery of fuzzy

sequential patterns, which lack comparability to others. Due to the similar consideration, MSIS [44]

is chosen as the representative of MSIS-based algorithms, which cover MBFIFS [43], CPNFMLSP

[41] and CPNFSP [42], because MBFIFS and CPNFMLSP focus on fuzzy sequential pattern mining

while CPNFSP focus on NSP mining with multiple minimum supports. Incremental CPNFSP [32]

is not evaluated in this paper, because it has a low number of citation and it is not more than an

extension of CPNFSP which is applied to dynamic datasets, which lacks representation. In addition,

SpamNeg [68] is also not evaluated, because it actually aims to discover the event-oriented negative

sequential rules and it holds a restriction that each element is composed of only one item, which has

a high limitation in real application and thus lacks actionablity and representation. Finally, e-NSP

[8] is chosen as the representative of the algorithms based on e-NSP, which include SAPNSP [39],

e-msNSP [61] and e-NSPFI [26], because e-NSP is an original algorithm for set theory-based NSP

mining. Furthermore, SAPNSP and e-msNSP focuses on the mining of NSP based on interestingness

measure and multiple minimum supports respectively, while e-NSPFI focuses on the discovery of

NSP from both frequent and infrequent PSP, which lack comparability to other algorithms.

We extend the representative NSP algorithms NSPM, MSIS, PNSP, NegGSP, GA-NSP and e-NSP

by adjusting the constraint settings and negative containments. First, AprioriAll is adopted by MSIS

to discover PSPs, and GSP is adopted by other algorithms. In addition, PNSP adopts ESC, EFC and

N-containment (Containment 3) while NegGSP adopts IFC and MPS-based negative containment

(Containment 2), which results in six adjusted versions of these two algorithms: PNSPwithESC,

PNSPwithCoverESC, PNSP, PNSPwithCover, NegGSP and NegGSPwithFC. Furthermore, two similar

negative containments, negative-support and strictly-negative-support, are incorporated into MSIS,

which results in twoMSIS-related algorithms:MSISwithCover andMSISwithContain. The constraint

settings and negative containments adopted by eight algorithms are listed in Table 8. In addition,

GA-NSP is implemented with the crossover rate at 100%, mutation rate at 10% and decay rate at

10%. In the following figures, the X-axis stands for the value of minimum support and the Y-axis

stands for the value of the evaluation criteria, the unit of NSP runtime (Nrt) is the millisecond, and

the unit of NSP count (Nct) and total length of NSCs (Tlnc) is one.

6.2 Algorithm Efficiency Analysis
Here, we analyse the efficiency of these representative algorithms on two real-life datasets, which

is shown in Figures 1 and 2.
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(a) NSP Count (Absolute Value,
High Threshold)

(b) NSP Count (Absolute Value,
Low Threshold)

(c) NSP Runtime (Absolute Value,
High Threshold)

(d) NSP Runtime (Absolute Value,
Low Threshold)

(e) Total Length of NSC (Absolute
Value, High Threshold)

(f) Total Length of NSC (Absolute
Value, Low Threshold)

Fig. 1. Algorithm Efficiency Analysis on RL_1 (X-axis stands for threshold, and Y-axis stands for algorithm
efficiency)

The efficiency of algorithms on RL_1 is illustrated in Figure 1. As seen from Figure 1a, when

mining on RL_1 under threshold greater than 0.36, the Nct of PNSPwithCoverESC and PNSPwith-

Cover is quite similar to that of two NegGSP-based variants, which is twice higher than that of

PNSPwithESC and PNSP. It shows that the adoption of negative containment leaves a higher impact

on Nct than constraint setting on high threshold on RL_1, and a similar phenomenon is also seen

when comparing the Nct of MSISwithCover and MSISwithContain. Another interesting observation

is that GA-NSP can achieve a slightly higher Nct than two PNSP-based variants with N-containment,

and e-NSP and NSPM maintain the lowest Nct. However, from Figure 1b we can see, when thresh-

old declines to 0.26, PNSP gets a similar Nct with PNSPwithCover and NegGSPwithFC, which is

higher than that of two PNSP-based variants with ESC. It demonstrates that when threshold is low,

negative constraint leaves a smaller impact on Nct, which is also verified by MSISwithCover and

MSISwithContain. Different from the observation of Figure 1a, GA-NSP only discovers half number

of NSPs than PNSPwithESC and PNSP, which shows its GA limits its competition for NSP mining

under low threshold. It is noted that the results of GA-NSP show a fluctuation in these figures,

because GA-NSP is based on genetic algorithm, which makes the efficiency of GA-NSP less stable

and the coverage of the discovered NSPs cannot be guaranteed. Similar phenomena can be also

seen in Figure 2. In addition, the Nct of e-NSP is only one-eighth of NSPM when threshold is less

than 0.2. It is shown from Figure 1c that when threshold is high, the Nrt of NegGSP is significantly

higher than that of NegGSPwithFC and PNSP-based variants, especially whenmin_sup ⩽ 0.44.
Moreover, four PNSP-based variants consume similar runtime, which means different constraint

and negative containment have little effect on Nrt. NSPM achieves the lowest Nrt, followed by

e-NSP with a mildly higher Nrt. But Figure 1d indicates, when threshold is lower than 0.3, PNSP

and PNSPwithCover consume a little higher Nrt than other PNSP-based variants with ESC, which

means ESC can help reduce Nrt and has more influence than negative containment. The Nrt of
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(a) NSP Count (Absolute Value,
High Threshold)

(b) NSP Count (Absolute Value,
Low Threshold)

(c) NSP Runtime (Absolute Value,
High Threshold)

(d) NSP Runtime (Absolute Value,
Low Threshold)

(e) Total Length of NSC (Absolute
Value, High Threshold)

(f) Total Length of NSC (Absolute
Value, Low Threshold)

Fig. 2. Algorithm Efficiency Analysis on RL_2 (X-axis stands for threshold, and Y-axis stands for algorithm
efficiency)

NSPM gets increased clearly whenmin_sup ⩽ 0.22, and so does NSPM whenmin_sup ⩽ 0.14. In
comparison, e-NSP maintains a gentle Nrt. Figure 1e shows, when threshold greater than 0.44,

almost identical Tlnc is generated by PNSP-based and NegGSP-based variants, but thereafter the

Tlnc of PNSP-based variants with ESC is slightly less than that of PNSP and PNSPwithCover,

which is over four times of that of NegGSPwithFC. Obviously, NegGSP generates the highest Tlnc,
indicating IFC imposes a huge pressure on memory capacity even though NegGSPwithFC generates

the lowest Tlnc among the complete NSP mining algorithms. Noted from Figure 1f, PNSP-based

variants generate significantly higher Tlnc than NegGSPwithFC, especially whenmin_sup ⩽ 0.3,
showing the advantage of NegGSPwithFC on the quality of generated NSCs. Finally, Tlnc of NSPM
rises rapidly and exceeds that of MSIS-based variants whenmin_sup ⩽ 0.14, and e-NSP retains the

smallest Tlnc on all thresholds.

The efficiency of algorithms on RL_2 is illustrated in Figure 2. Figure 2a shows that NegGSP-

based variants, PNSP and PNSPwithCover produce the same Nct under high threshold, which is

dramatically higher than that of PNSPwithESC and PNSPwithCoverESC. It reveals that on RL_2, Nct
is less impacted by negative containment than by constraints. This phenomenon is quite different

from that of Figure 1a, and a reason is that the average length of sequences of RL_2 is far smaller

than that of RL_1 but RL_2 contains more distinct items (N ), showing that the impact of negative

containment on the Nct of algorithms is highly influenced by the data factors of datasets. This

statement is also verified by the Nct of two MSIS-based algorithms. Another observation is that

GA-NSP has a fluctuating Nct, and it shows its instability. From Figure 2b we can see, the Nct of
NegGSP-based variants, PNSP and PNSPwithCover is identical and always more than three times

higher than that of the PNSP-based variants with ESC, and it reveals the adoption of different

negative containment and IFC leave little impact onNct whenmining on sparse datasets but ESC can

reduce the number of discovered patterns. In addition, Nct of GA-NSP and NSPM is raised quickly
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under low threshold but that of e-NSP changes smoothly. Different from Figure 1c, 2c reveals when

mining on RL_2 under high threshold, the Nrt of NegGSP-based variants is similar to that of PNSP

and PNSPwithCover, which is more than two times higher than that of two PNSP-based variants

with ESC. Moreover, e-NSP consumes a slightly higher Nrt than NSPM, which is also seen in Figure

2d. Figure 2d further shows that PNSP and PNSPwithCover consume a significantly higher Nrt
than PNSPwithESC and PNSPwithCoverESC especially whenmin_sup ⩽ 0.20, and NegGSP-based

variants consume a relatively lower runtime than PNSP and PNSPwithCover. It illustrates, when

applied on sparse dataset, ESC can accelerate the mining process obviously, and with the same

constraints and negative containment NegGSP outperforms PNSP under low threshold in terms of

runtime. Furthermore, GA-NSP consumes a higher Nrt than PNSPwithCoverESC, and the Nrt of
e-NSP also exceeds that of NSPM, showing the runtime advantage of GA-NSP and e-NSP is less

obvious for sparse dataset. As shown in Figure 2e, PNSP and PNSPwithCover achieve the highest

Tlnc, followed by two NegGSP-based variants, of which the Tlnc is a little higher than that of

PNSPwithESC and PNSPwithCoverESC. In addition, in Figure 2f, NegGSP-based variants consume

less than half of the Tlnc of PNSPwithESC and PNSPwithCoverESC, demonstrating that NegGSP

is a quite competitive complete NSP mining algorithm on sparse dataset under low threshold.

Furthermore, the Tlnc of GA-NSP is higher than that of PNSPwithESC and PNSPwithCoverESC

on most high thresholds, but relatively lower whenmin_sup ⩽ 0.025. Under all thresholds, e-NSP
maintains the lowest Tlnc, which is clearly lower than NSPM and MSIS-based variants.

Based on the above analysis, we can find that the efficiency of NSP mining algorithms is highly

influenced by the data factors of a dataset. Hence, it is quite reasonable to select the optimal NSP

mining algorithm based on the data characteristics of dataset, which can be also seen in Section 5.5.

7 PROSPECTS
Our comprehensive technical review discloses the significant challenges facing NSA research and

the enormous opportunities NSA presents. NSA-related research is still in an early stage and there

is huge potential for NSA for various non-occurring behaviors and applications [13, 19, 31, 35, 39].

In this section, we highlight several open issues in NSA research, inspired by the above technical

and experimental analysis.

Semantic Constraint-based NSP Mining aims to push the semantic constraints into the

mining process of NSP and discover the complete set of NSPs satisfying both a given threshold

and a semantic constraint S . Different from the existing negative constraints presented in Section

4, semantic constraints confine the mined patterns to a particular subset of conditions based

on user interest and focus, which is widely used in PSP mining and frequent itemset mining

[27, 48, 66]. To the best of our knowledge, no research has been done to apply the semantic

constraints which are widely used in PSP mining into NSA problems, as PSP mining follows the

downward closure property while NSA does not. As NSA also covers PSP, hence it is understandable

that existing PSP constraints can still be introduced into the positive sequences in NSA, however,

the negative constraints on the negation of items, elements, sequences and patterns are very

different. Nonetheless, semantic constraint-based NSP mining is highly worthwhile because it

can significantly improve the effectiveness and efficiency of pattern mining [47]. Potential NSP

semantic constraints can include but are not limited to item constraint, length/size/width constraint,
super-pattern constraint, aggregate constraint, regular expression constraint and time-stamp constraint.
Below, we present these semantic constraints first from the perspective of application based on the

forms of these constraints, and then characterize them from the perspective of constraint properties.

Constraint 11 (Item Constraint (IC)). An item constraint (ISC) specifies the particular set
of items which should or should not be presented in the elements of a pattern S , i.e., CIC (S) ≡ (φ k :
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1 ⩽ k ⩽ size(S), (S[k] θ Vα ) δ (S[k] ∩ Vβ µ �)), where Vα is the set of items that should occur in
elements whileVβ is the one that should not, φ ∈ {∀,∃}, δ ∈ {∨,∧}, θ ∈ {⊆, ⊈, ⊇, ⊉, ⊂,1, ⊃,2, ∈, <}
and µ ∈ {=,,}.

Example 30. Given constraint CIC (S) ≡ (∀k : 1 ⩽ k ⩽ size(S), (S[k] ⊆ (a, ⌝a,b, ⌝c,d)) ∧
(S[k] ∩ (b,d) , �)), then negative sequence Sα =< (⌝c,d), (a,b),b, (⌝a,d) > satisfies CIC (S) while
Sβ =<⌝(a,b,d), (a, c) > does not, because Sβ [1] ⊈ (a, ⌝a,b, ⌝c,d) and Sβ [2] ∩ (b,d) = �.

Constraint 12 (Length/Size/Width Constraint (LSWC)). An length/Size/width constraint

(LSWC) specifies the restriction on the length, size, neg-size or width of a pattern S , or the requirement
on the size or neg-size of the elements in S i.e.,CLSWC (S) ≡ ((lenдth(S) σ tl ) δ (size(S) σ ts ) δ (neд −
size(S) σ tns ) δ (width(S) σ tw ) δ (φ k : 1 ⩽ k ⩽ size(S), (size(S[k]) σ tes ) δ (neд−size(S[k]) σ tens )),
where σ ∈ {>, ⩽, <, ⩾,=,,}, tl , ts , tns and tw are the thresholds on the length, size, neg-size and
width of S while tes and tens are the thresholds on the size and neg-size of the elements in S .

Example 31. Given constraintCLSWC (S) ≡ ((lenдth(S) > 12) ∧ (neд − size(S) < 2) ∧ (width(S) <
4) ∧ ∀k : 1 ⩽ k ⩽ size(S), size(S[k]) > 2), then Sneд =< (⌝c,d), (a,b), ⌝c,b, (⌝a,b, ⌝c,d) > does not
satisfy CLSWC (S) because lenдth(S) = 10, neд − size(S) = 3,width(S) = 4, and size(⌝c) = 1.

Constraint 13 (Super-pattern Constraint (SPC)). An super-pattern constraint (SPC) specifies
a particular set of pattern that should or should not be contained by a pattern S as sub-patterns, i.e.,
CSPC (S) ≡ (φ γ ∈ P s .t . γ ω S), where P is the set of pattern that should or should not be contained,
and ω ∈ {⊆, ⊇}.

Example 32. In Example 30, given constraint CSPC (S) ≡ (<⌝c,b, ⌝a >⊆ S), then Sα satisfies
CSPC (S) while Sβ does not, because <⌝c,b, ⌝a >⊈ Sβ .

Constraint 14 (Aggregate Constraint (AC)). Suppose the items in a pattern are associated
with a numeric attribute A, an aggregate constraint (SPC) specifies on an aggregate of items in
a pattern S , i.e., CAC (S) ≡ (ηi ∈S [k ],1⩽k⩽size(S ) i .A σ tac ). Here tac is a given threshold and η is an
aggregate function on items, which can be sum, avд,max ,min, standard deviation, etc.

Example 33. In marketing analysis, suppose each item i is associated with a profit attribute, i.e.,
i .pro f it , a constraint CAC ≡ (

∑
i ∈S [k ],1⩽k⩽size(S ) i .pro f it ⩾ 80) specifies the patterns where the total

profit is no less than 80, where the profit of a negative item is the cost of this commodity.

Constraint 15 (Regular Expression Constraint (REC)). A regular expression constraint

(SPC) is specified as a regular expression over the sequence elements using the established set of regular
operations, such as disjunction (|) and Kleene closure (∗) [23]. A pattern S satisfies a regular expression
constraint SREC (S) if and only if S is accepted by the equivalent deterministic finite automata [48],
thus SREC (S) specifies a regular family of sequential patterns which is of interest to users.

Example 34. In Example 11, given constraint SREC (S) = (b∗(⌝a |d)), then Sα satisfies SREC (S) while
Sβ does not.

Constraint 16 (Time-stamp Constraint (TSC)). Suppose each element e of the data sequences
in sequence dataset is associated with a time-stamp attribute, denoted as e .ts , a time-stamp constraint

(TSC) specifies that the time-stamp difference between particular elements in pattern S should satisfy
a given period requirement, i.e., CTSC (S) ≡ (|{< Siddata , Sdata > | (< Siddata , Sdata >∈ D) ∧
(Sneд⊆Sdata) ∧ (f or1 ⩽ i < j ⩽ size(S),∃1 ⩽ ki < kj ⩽ size(Sdata) s .t . (S[i] ⊆ Sdata[ki ]) ∧ (S[j] ⊆
Sdata[kj ]) ∧ (Sdata[kj ].ts − Sdata[ki ].ts) σ tts )}| ⩾ min_sup × |D |). To avoid confusion, CTSC (S)
specifies that S does not contain proper negative elements, since it is impractical to determine the
time-stamp when no item occurs.
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Table 9. Monotonicity, Anti-monotonicity and Succinctness of Commonly Used Semantic Constraints (NN
stands for Not Necessary)

Constraint Definition Mono Anti-
Mono

Succ

IC CIC (S ) ≡ (φ k : 1 ⩽ k ⩽ size(S ), S [k ] ⊆ Vα ), φ ∈ {∀, ∃} No Yes Yes

CIC (S ) ≡ (φ k : 1 ⩽ k ⩽ size(S ), S [k ] ⊇ Vα ), φ ∈ {∀, ∃} Yes No Yes

CIC (S ) ≡ (φ k : 1 ⩽ k ⩽ size(S ), S [k ] ∩Vβ = �), φ ∈ {∀, ∃} No Yes Yes

CIC (S ) ≡ (φ k : 1 ⩽ k ⩽ size(S ), S [k ] ∩Vβ , �), φ ∈ {∀, ∃} Yes No Yes

LSWC CLSWC (S ) ≡ (f un(S ) ⩽ t ), f un(S ) ∈ {lenдth(S ), size(S ), neд − size(S ), width(S )} Yes No Yes

CLSWC (S ) ≡ (f un(S ) ⩾ t ), f un(S ) ∈ {lenдth(S ), size(S ), neд − size(S ), width(S )} No Yes Yes

SPC CSPC (S ) ≡ (φ γ ∈ P s .t . γ ⊆ S ), φ ∈ {∀, ∃} Yes No Yes

CSPC (S ) ≡ (φ γ ∈ P s .t . γ ⊇ S ), φ ∈ {∀, ∃} No Yes Yes

AC CAC (S ) ≡ (maxi∈S [k ],1⩽k⩽size (S ) i .A ⩽ t ) No Yes Yes

CAC (S ) ≡ (maxi∈S [k ],1⩽k⩽size (S ) i .A ⩾ t ) Yes No Yes

CAC (S ) ≡ (mini∈S [k ],1⩽k⩽size (S ) i .A ⩽ t ) Yes No Yes

CAC (S ) ≡ (mini∈S [k ],1⩽k⩽size (S ) i .A ⩾ t ) No Yes Yes

CAC (S ) ≡ (η′i∈S [k ],1⩽k⩽size (S ) i .A σ ′ t ), η′ ∈ {sum, avд } and σ ′ ∈ {>, ⩽, <, ⩾} No No No

REC Regular expression NN NN NN

LTSC CDC (S ) ≡ (dur (S ) σ tts ), σ ∈ {>, ⩽, <, ⩾, =, ,} No No No

CDC (S ) ≡ (дap(S ) σ tts ), σ ∈ {>, ⩽, <, ⩾, =, ,} No Yes No

Example 35. Two commonly derived TSC are duration constraint and gap constraint. Duration
constraint (DC) specifies that the time-stamp difference between the first and last elements in a
pattern S satisfy a period requirement, i.e., CDC (S) ≡ (|{< Siddata , Sdata > | (< Siddata , Sdata >∈
D) ∧ (Sneд⊆Sdata) ∧ (∃1 ⩽ k1 < ksize(S ) ⩽ size(Sdata) s .t . (S[1] ⊆ Sdata[k1]) ∧ (S[size(S)] ⊆

Sdata[ksize(S )]) ∧ (Sdata[ksize(S )].ts − Sdata[k1].ts) σ tts )}| ⩾ min_sup × |D |), which is also denoted
as CDC (S) ≡ (dur (S) σ tts ). And gap constraint (GC) specifies that the time-stamp difference between
two adjacent elements in S satisfy a period requirement, i.e., CGC (S) ≡ (|{< Siddata , Sdata > | (<
Siddata , Sdata >∈ D) ∧ (Sneд⊆Sdata) ∧ (∀1 ⩽ i ⩽ size(S) − 1,∃1 ⩽ ki ⩽ size(Sdata) s .t . (S[i] ⊆
Sdata[ki ]) ∧ (Sdata[ki+1].ts − Sdata[ki ].ts) σ tts )}| ⩾ min_sup × |D |), which is also denoted as
CDC (S) ≡ (дap(S) σ tts ).

Among the above constraints, we can see that TSC is support-related, while others can be judged

whether they are satisfied by the patterns themselves. Below, we characterize these semantic

constraints from the perspective of three constraint properties, including monotonicity, anti-

monotonicity and succinctness, commonly-used for traditional constrained PSP mining [48] and

constrained frequent itemset mining [45]. Here a semantic constraintCm ismonotonic if a sequence
S satisfies Cm implies that each super-sequence of S also satisfies Cm . And a constraint Ca is

anti-monotonic if a sequence S satisfies Ca implies that each subsequence of S also satisfies Cm . In

addition, a constraintCs is succinct if a sequence S satisfiesCs implies that all the elements of S can

be expressed in terms of the strict powersets of a fixed number of succinct sets using the set union

and/or set difference operators, where a succinct set is an itemset in which items are selected from

I using a selection operator τp (I ) for some selection predicate p. In other words, all the patterns

satisfying a succinct constraint Cs can be explicitly and preciously generated without an iterative

generation-and-testing approach [47]. As per the definition of the above semantic constraints, the

monotonicity, anti-monotonicity and succinctness property of some commonly used constraints

are shown in Table 9. It is noted that a regular expression constraint SREC (S) is not necessarily
a monotonic, anti-monotonic or succinct constraint, despite some particular regular expression

constraints have these properties. Because of the space limitation, the relevant proof are omitted.
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Some efforts have already been made to the related research on the PSP mining with semantic

constraints, including some Apriori-based vertical formatting algorithms [66] and projection-based

pattern-growth algorithms [47, 48]. However, none of them can be applied to semantic constraint-

based NSP mining directly. On one hand, suffering from the violation of downward closure property,

Apriori-based algorithms cannot work in NSP mining, such as cSPADE [66]. On the other hand,

since negative items do not appear in a sequence dataset, NSC cannot be enumerated and generated

by projection-based pattern-growth algorithms, such as [48]. In addition, the property of semantic

constraints in NSP is a little different from that in PSP, thus some new theoretical breakthroughs

and relevant algorithms are required for semantic constraint-based NSP mining.

NSP Mining with Loose Constraint Settings aims to achieve a reasonably large search space

which generates sufficient NSCs and avoid the missing of informative patterns. With an increased

number of generated NSCs, the comparison time and number of items to be saved rise accordingly,

which substantially increases the runtime and space complexity. This requires the development of

efficient data structures for storage and calculations. Moreover, effective pruning strategies need to

be studied to avoid the generation of invalid NSCs and reduce the search space.

Incremental NSP Mining over Sequence Stream is much more challenging than classic NSP

mining on static sequences but applicable to real-life applications involving data streams in which

new data sequences are continuously inserted [17]. New data sequences may be generated at high

speed, and NSP algorithms can only process the incoming new sequences once and do not rescan

the dataset, as is usually done by existing algorithms [50]. By incorporating the new streamed

sequences, the amount of space and memory resource required to process sequences may be quickly

exhausted. This involves many issues including how to store, represent, and process evolving NSPs,

and how to define related constraint settings and negative containments.

QuantitativeNSPMining considers the different significance of each negative containment and

evaluates a negative sequence in terms of its utility, instead of frequency only, which can discover

more informative NSPs and achieve a higher actionability of the resultant patterns [5, 11, 63]. In

some real-life applications, items with high utility [63] may appear infrequently. For example,

in a PC shop, failing to sell a laptop would lead to a greater reduction in profit than failing to

sell a mouse. Proper strategies may be informed by analyzing how to promote laptop sales to

achieve higher profitability. For this, we need to quantify the utility of a negative item, element and

sequence, and build a new theoretical framework for quantitative NSP mining, for which existing

NSP algorithms do not work. This involves many issues such as new evaluation measures, data

structures, negative containment, NSC selection, and pruning strategies.

NSP Mining with Complex Hierarchical Structure considers hierarchical structures in se-

quences and breaks the assumption that items in the same element have no order and are on the same

level, taken by existingNSP algorithms. For example, inmarketing, let< (coke, tissue, sprite), (bread,
milk) > be a purchasing transaction. It is clear that both coke and sprite belong to a subclass of

food and that they can be considered separately from the item tissue . The existing NSP problem

statement is not applicable to this scenario and the introduction of a complex hierarchical structure

can simplify the solution to such issues. When hierarchical and coupling relationships [5, 7] are

considered, many interesting research issues arise that are aligned with real-life behavior interac-

tions and applications. It requires theoretical breakthroughs in representing, modeling, reasoning

about, storing, and managing complex structures, hierarchies and relationships in NSA.

Top-KNSPMining allows users to determine the number of patterns to be discovered and target

mining only patterns with high frequency within a limited search space and lower computational

complexity, instead of setting an ideal threshold and mining all NSPs. Compared with top-K PSP

mining, top-K NSP mining is more challenging and sophisticated, because the downward closure

property does not hold in NSP mining. Accordingly, classic top-K PSP mining algorithms, such as
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TSP [54], TUS [64] and TKU [58], cannot be used or adjusted directly. Therefore, new theories and

algorithms are required to discover top-K NSPs.

8 CONCLUSIONS
Non-occurring behaviors are widely apparent in many applications, while effective theories and

algorithms for discovering their patterns are unavailable. A specific direction is to identify non-

occurring sequences in behavioral data, a process which is also called negative sequence analysis.

Compared to positive sequential pattern discovery, negative sequential pattern mining is a relatively

new area with diversified problem statements and technical designs, as well as limited research

outcomes. This is because of the complex intrinsic characteristics and significant challenges in NSA,

which are often managed by the proposal of specific constraint settings and negative containments.

This paper reviews all available NSP algorithms. Since existing work has been built on specific

problem definitions and settings, this work consolidates and forms a comprehensive and systematic

representation, formalization, and theoretical system for defining and representing NSP problems,

constraints, negative containment, and evaluation. Existing algorithms are evaluated in terms of

the proposed theoretical systems. In addition to the comprehensive technical review, this work also

provides empirical analysis of representative NSP mining algorithms. Several new opportunities

are discussed which represent a proportion of the ongoing and future work we are working on.
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