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Abstract—Dependence across multiple financial markets, such
as stock and foreign exchange rate markets, is high-dimensional,
contains various relationships, and often presents complicated
dependence structures and characteristics such as asymmetrical
dependence. Modeling such dependence structures is very chal-
lenging. Although copula has been demonstrated to be effective
in describing dependence between variables in recent studies,
building effective dependence structures to address the above
complexities significantly challenges existing copula models. In
this paper, we propose a new D vine-based model with a bottom-
up strategy to construct high-dimensional dependence structures.
The new modeling outcomes are applied to trade 15 stock
market indices and 10 currency rates over 16 years as a case
study. Extensive experimental results show that this model and
its intrinsic design significantly outperform typical models and
industry baselines, as shown by the log-likelihood and Vuong test,
and Value at Risk - a widely used industrial benchmark. Our
model provides interpretable knowledge and profound insights
into the high-dimensional dependence structures across data
sources.

I. INTRODUCTION

Dependence between financial markets (for short, cross-
market dependence) has long been an issue of interest in
both academia and industry. Effectively modeling cross-market
dependence can contribute to significant consequences in-
cluding the identification of opportunities for and barriers to
international portfolio investment with important implications
for portfolio allocation and asset pricing. In financial theory,
if financial markets are not integrated, entailing differential
investment and consumption opportunity sets across countries,
investment barriers will affect investor portfolio choices and
company financing decisions. Since exchange rates affect the
cost of consumption across countries, as a result, exchange
rate risk influences the price of assets to foreign investors.

Dependence between different countries can be easily seen
from Figure 1. Figure 1(a) shows the daily returns between
the United Kingdom comprehensive index FTSE100 and the
United States comprehensive index S&P500, which indicates
the strong positive correlation between them. Dependence
between the foreign exchange rate GBP against the USD and
the United Kingdom comprehensive index FTSE100 is shown
in Fig. 1(b), which indicates negative dependence. These
examples show that it is essential to realize that exchange rate
markets significantly affect asset markets. It means that stock
markets and exchange rate markets are dependent.

Modeling cross-market dependence involves the devel-
opment of proper dependence structures. Typically, a low
correlation coefficient between two markets implies a good

(a) FTSE100 and S&P500 (b) FTSE100 and GBP

Fig. 1. Dependence across Markets

opportunity for an investor to diversify investment and reduce
risk. For example, suppose that the return in a domestic market
and in a foreign market has a linear correlation coefficient
of 0.2. Under the Gaussian assumption, the probability that
the return in both markets is in their lowest 5th percentile
is less than 0.005. Thus, based on the Gaussian assumption,
an investor can significantly reduce the investment risk in the
domestic market by hedging in the foreign market. However, it
has been widely observed that market crash and financial crisis
often happen in different countries approximately around the
same time period, even when the correlation between these
markets is fairly low. Therefore, in cross-market studies, we
have to consider not only the degree of dependence, but also
the structure of dependence. The importance of dependence
structure is demonstrated in Fig. 2. The two graphs in Fig.
2 present two different dependence structures with the same
correlation.

The challenge of modeling cross-market dependence lies
in the three major aspects concerning us in this paper. Firstly,
as with any complex behavioral and social system, the cross-
market dependence structure is often embedded with strong
couplings on high dimensionality [1]; the dependence across
markets has been demonstrated to be significantly asymmetri-
cal and nonlinear. For example, return in stock markets will
have stronger correlation in a bear market downturn than in
a bull market. Secondly, financial variables, such as daily
return, have been shown to follow non-normal distributions,
which means they do not follow the Gaussian assumption.
For example, in [2], the empirical distribution of return from
developed stock markets tends to display more kurtosis and
have a pronounced higher peak than allowed under the normal-
ity hypothesis. The return on assets from emerging markets,
however, is more volatile, and one can expect that it will
be even more difficult to identify its distribution. This means



(a) Gaussian Copula (b) Clayton Copula

Fig. 2. The Scatter Plot of Return with Correlation 0.17

that different markets have different characteristics. Finally, an
important issue in modeling cross-market dependence is high
dimensional data. The corresponding models have to handle
high dimensional financial variables (generally more than 20)
that always lead over ten thousand features for a group of time
series at one time window. However, it is difficult to deal with
high dimensional variables due to the curse of dimensionality.

Dependence across markets has been studied by different
communities, including statistics and machine learning. The
typical approaches in the statistical community are joint distri-
bution with Gaussian assumption and conditional correlation.
The first method has been demonstrated that Gaussian assump-
tion is inappropriate when studying either stock markets or
exchange rate markets. The second one is to use conditional
correlation to calculate the covariance, which is generally used
in empirical studies. As the current correlation depends on
previous one, the dependence structure is not flexible. The
dependence studies in machine learning community consist of
hidden Markov models and graphical probability models. The
hidden Markov models, however, could have a large number
of hidden states when applying to a high dimensional case,
which invariably leads to computational intractability in the
algorithms for inferring the hidden states from observations.
The graphical probability models, such as Bayesian logic
program [3], impose unrealistic assumptions in constructing
dependence structures. As a result, they cannot capture the
complex and asymmetrical dependence structures with high-
dimensional variables [4].

The typical framework for dependence modeling is the
copula-based models, such as [5], [6], [7], [8]. A copula-
based model is a more convenient tool for studying dependence
structures. A copula is a function that connects the marginal
distributions to restore the joint distribution and various copula
functions representing various dependence structures between
variables. In a copula-based model, the primary task is to
choose an appropriate copula function and a corresponding
estimation procedure. Marginal distributions are treated as
nuisance functions. This reorientation has desirable advantages
in empirical finance where one of the primary goals is to
investigate dependence in order to better understand issues
like portfolio allocation and where the marginal distributions of
asset return in individual markets may be very complicated and
may not easily fit existing parametric models. Existing copula-
based models, however, neither apply in high-dimensional
cases [5], nor have the ‘best’ dependence structure to capture
the asymmetrical and complex dependence structure across
markets [9].

Since the existing copula models do not address all the

challenges mentioned above, we here propose a new cop-
ula model: a Weighted Partial Vine Copula model (WPVC).
WPVC is more powerful, because: (1) A partial D vine tree
structure is created to capture the asymmetrical dependence
across financial markets to construct complex and asymmetri-
cal dependence structures. The advantage of the partial D vine
dependence tree structure is that it can uniquely determine
the correlation matrix and be algebraically independent, thus
capable of handling the complex and asymmetrical dependence
across markets. (2) Various time series models are used to
capture the characteristics of different financial markets, which
do not impose any Gaussian assumption on data. For example,
we use AR(1)-GARCH(1,1) with skewed student t innovation
to capture the volatility clustering of stock markets, and use
ARMA(1,1)-GARCH(1,1) with inverse normal innovation to
capture the fat tail of currency markets. (3) A truncated
method replaces weak correlations in dependence structure
with conditional independence but does not affect the structure,
which thus effectively resolves the high dimensional issues.

The rest of this paper is organized as follows: Section
2 presents the related work. Section 3 introduces the basic
concepts and the foundation of copula, the vine copula model
and partial correlation. Sections 4 and 5 present WPVC, in-
cluding D vine dependence structure building, bivariate copula
selection, marginal distribution specification, and parameter
estimation. The evaluation methods are discussed in Section
6 to verify the performance of high-dimensional financial
variables. Section 7 shows the case study results. Section 8
concludes this work.

II. RELATED WORK

Dependence across financial markets has been studied in
the past decades. Several typical alternatives are available in
multivariate analysis for studying dependence across markets
in both statistics and machine learning communities. One
approach is to use a joint distribution, typically the multivariate
normal distribution. Under the Gaussian assumption, inference
is then conducted based on the mean-variance analysis. How-
ever, there is increasing evidence indicating that the Gaussian
assumption is inappropriate in the real world, as both stock and
exchange rate markets face significant non-Gaussian character-
istics [10]. Another issue of the joint distribution methods is
that they only consider dependence, but ignore the dependence
structure. As discussed in Section 1, we have to consider both
the dependence degree and dependence structure. For example,
given a copula, for the same correlation (dependence degree),
it can show different dependence structures.

The second approach that has been used in empirical
studies is to compute conditional correlations, such as the
Dynamic Conditional Correlation (DCC) model [11]. It has
been found that correlations computed with different condi-
tions could differ dramatically. The correlations conditioned
on large movements are higher than that conditional on small
movements. The reason for this is that even a stationary
Gaussian process predicts stronger dependence in volatile
periods and weaker dependence in tranquil periods. Hence, the
results are sometimes misleading and need to be interpreted
carefully. In addition, another drawback of the DCC models
is that if restriction on the covariance matrix (dependence
structure) is not imposed, then the number of parameters are



huge. If restriction is imposed on the covariance matrix, then
the structure is less flexible.

The third approach of modeling dependence is probabilistic
graphical models, including the Bayesian logic program [12]
and relational dependency networks [3]. These models gen-
erally build a graph to represent the conditional dependence
structure between random variables. For example, the latent
factor models with a dependency structure in the latent space
were studied in [13]. A set of probabilistic dependencies
were learned in [14] to identify the relationships between
the headwords of each phrase. These models handle high-
dimensional problems, and have the advantage of learning
latent relationships from data. However, as discussed in [4],
they tend to force the local quantitative part of the model
to take a simple form such as the discretized form of the
data, when a multivariate Gaussian or its mixtures cannot
capture the data in the real world. This leads to the assumption
that is difficult for these models to capture the complex and
asymmetrical dependence in the high dimensional case.

Another alternative approach of modeling dependence in
machine learning is the hidden Markov model (HMM) and
its variants, which represent probabilistic distributions over
sequences of observations and Bayesian networks. If HMM is
used in the high dimensional case, its generalizations, such as
factorial HMMs, tree structured HMMs, and switching state-
space models, use richer hidden representations to model more
interesting temporal relationships that cannot be captured by
simple HMMs. However, having richer hidden state repre-
sentations invariably leads to computational intractability in
the algorithms when inferring hidden states from observations
[15].

Finally, copula-based models have been used to directly
model dependence, as a copula provides an effective tool
for modeling and analyzing dependence structures between
random variables. Copula-based dependence models are free
of the linear correlation restriction, and allow dependence and
correlation to vary over time. In addition to capturing depen-
dence, a copula can build flexible structures to model complex
high-dimensional dependency structures. The copula family
consists of time-varying copula models [16], stochastic copula
models [17], and vine copula models [18]. Time-varying
copula models and stochastic copula models are incapable for
dealing with high-dimensional variables due to the complexity
of dependence structures and the curse of dimensionality. Ex-
isting vine-based copula models, such as canonical vine copula
[9], has a strong assumption about dependence structures,
leading to difficulty in capturing the complex dependences
between markets. A copula Bayesian network was proposed
in [19] to model high-dimensional continuous distributions.
However, this model uses conditional independence to replace
the dependence between random variables, which leads to the
loss of dependence in structures. A copula-based model was
introduced in [8] to measure the dependence between random
variables, which is only applied to bivariables. In [6], a copula-
based approach learns the copula distribution over the latent
variables. This model uses the bivariate copula distribution,
which means it can only apply to bivariables.

III. PRELIMINARIES

A. Copula Theory

A copula has been proved to be a powerful tool in modeling
the dependence of multivariables. It can capture complicated
correlations between variables regardless of whether they are
linear or non-linear. In terms of Sklar’s theorem [20], every
multivariate distribution F with marginal F1(x1), . . . , Fn(xn)
can be expressed with its marginal distribution as variables for
a copula function. The definition of copula function is given
by:

F1(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (1)

for some appropriate n-dimensional copula C with uniformly
distributed marginal U(0, 1) on [0, 1]. F is the joint distribution
of a random vector x = [x1, . . . , xn], F1(x1), . . . , Fn(xn)
are the marginal distribution of the corresponding variables
respectively. If we define F−1i as the inverse distribution
function of a marginal distribution Fi, u = Fn(xn) the copula
from Equation (1) has the expression:

C(u1, u2, . . . , un) = F (F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)) (2)

In many cases, it is easier to get a density function rather
than a distribution function. We can join the density functions
f by using the density function of copula C. If the multivari-
ate distribution F is continuous, with strictly increasing and
continuous marginal densities F1(x1), . . . , Fn(xn), we have:

f(x1, x2, . . . , xn) = c(F1(x1), F2(x2), . . . , Fn(xn))

n∏
i=1

fi(xi)

(3)
Here c is the density copula functions and fi(xi) is the density

function of Fi(xi). Under the copula theory framework, for any
n-dimensional random vector x = (x1, . . . , xn), given any set
of marginal distributions F1(x1), . . . , Fn(xn) and the related
copula function C, we can obtain the corresponding joint
distribution function F (x1, x2, . . . , xn) by using Equation (1).
On the other hand, from Equation (2), we can infer that copula
functions can model dependence from marginal distributions
separately. This implies that the choice of a copula function
does not depend on the choice of marginal distribution, and
the marginal distributions for each variable do not have to be
the same. The marginal distribution for each variable can be
selected from mixed families. This property gives us a way to
measure the joint distribution for multivariates by separately
obtaining the marginal distribution and the corresponding
copula function.

B. Vine Copula

Joe [21] introduced a method to model multivariate data
by a cascade of simple building blocks. The modeling scheme
is based on the decomposition of a multivariate density into a
cascade of bivariate copulas, applying to the original variables
and their conditional and unconditional distribution functions.
It allows for different structural behaviors of bivariate variables
to be modeled suitably, in particular with regard to their
asymmetry, or strength of dependence. Based on the modeling
scheme, a D vine structure is introduced by Kurowicka and
Cooke [22]. In Equation (3), the multivariate copula functions
c(F1(x1), F2(x2), . . . , Fn(xn)) can be split into multiple bi-
variate copulas, which is given as follows:



c(F1(x1), F2(x2), . . . , Fn(xn))

=

n∏
k=1

fk(xk)

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1

(F (xi|xi, . . . , xi+j−1), F (xi+j |xi+1, . . . , xi+j−1))

(4)

Fig. 3 shows an example of D vine structure of six
variables. We can see that D vine belongs to graphical model,
thus, we introduce a concept of graphical models, which are
very important to understand how we construct the partial
D vine structure in the following sections. Let V, T,E,N
be denoted as vines, trees, edges and nodes respectively,
according to Kurowicka and Cooke [22], a vine V is a nested
set of connected trees V = T1, . . . , Tn−1. The edges of a tree
Tj are the nodes from tree Tj+1, where j = 1, . . . , n− 2. The
complete union, conditioning and conditioned sets for an edge
are given as follows:

Definition1 (Complete Union, Conditioning and Condi-
tioned Sets of an Edge). The complete union of an edge ei ∈
Ei is the set Uei = {n1 ∈ N1 | ∃ej ∈ Ej , j = 1, 2, . . . , i − 1
with n1 ∈ e1 ∈ e2 ∈ . . . ∈ ei−1 ∈ ei} ⊂ N1. For ei =
{a, b} ∈ Ei, a, b ∈ Ni, i = 1, 2, . . . , n−1, the conditioning set
of an edge ei is Dei = Ua ∩ Ub, and the conditioned sets of
an edge ei are Cei,a = Ua \Dei , Cei,b = Ub \Dei and Cei =
Cei,a ∪ Cei,b = Ua4Ub, where A4B := (A \ B) ∪ (B \ A)
denotes the symmetric difference of two sets.

Hence, Uei is a set of all nodes in Ni that are connected by
the edges ei. By definition, Uei(1) = ei. Then, the constraint
set is defined:

Definition2 (Constraint Set). The constraint set for V is a
set:
CV = {({Cea , Ceb}, De) | e ∈ Ei, e = {a, b}, i = 1, . . . , n− 1}

The edge e can be written as {Ce | De}, or
{Ce(a), Ce(b)|De, e = {a, b}}, where the conditioning
set De is shown to the right of “|”, and the conditioned set Ce
to the left. {Ua \ De} is the set which includes all variables
in the set Ua, but excludes the variables in the set De.

Definition3 The m-child and m-descendant are defined as
follows: (M-Child, M-Descendant). Let edge f be a variable of
edge k, and f be a m-child of k. If f is reachable from k via
the membership relation: f ∈ f1 ∈ . . . ∈ k, f is m-descendant
of k.

Example1Fig. 3 shows a D vine structure with six variables.
In Tree T1, N1 = {A,B,C,D,E, F}, E1 = {AB,
BC,CD,DE,EF}. Then, in Tree T2, N2 = E1, and E2 =
{{A,B}, {B,C}; {B,C}, {C,D}; {C,D}, {D,E}; {D,E},
{E,F}} = {AC|B,BD|C,CE|F,DF/E}. For edge e =
AC|B in the tree T2, the corresponding complete union are
Ua = {A,B} and Ub = {B,C}. The conditioning set is
De = {A,B} ∩ {B,C} = {B}. The conditioned set is
Ce(a) ∪ Ce(b) = {A,C}, where Ce(a) = {A,B}\{B} = {A}
and Ce(b) = {B,C}\{B} = {C}. The corresponding con-
straint set is {{Ce,a, Ce,b}, De} = {({A,C}, B)}.

C. Partial Correlation

Partial correlation is another important concept for con-
structing the partial D vine structure. Bedford and Cooke
[23] proposed a method to use partial correlation to measure
and determine the vine structure. The definition of partial
correlation is given by:

Definition4 Let X1, X2, . . . , Xn be random variables, the
partial correlation of X1 and X2 given by X3, . . . , Xn is:

ρ1,2;3,...,n =
ρ1,2;3,...,n−1 − ρ1,n;3,...,n−1 · ρ2,n;3,...,n−1√

1− ρ21,n;3,...,n−1 ·
√

1− ρ22,n;3,...,n−1

(5)

An important property of partial correlation is that for elliptical
distributions, partial correlation is equal to the corresponding
conditional correlation, which has been proved by [23]. Ac-
cording to this property, we can use partial correlation instead
of conditional correlation to measure the correlations on each
node. On the other hand, it is easy to find out that the partial
correlation (ρ1,2) is equal to Kendall’s tau (τ1,2). The partial
correlation can be easily computed via correlation by iterating
Equation (5).

IV. WEIGHTED PARTIAL VINE COPULA

As highlighted in the introduction, the Weighted Partial
Vine Copula (WPVC) is centered on the partial D vine
structure. It is constructed by a large number of bivariate
copulas, making it flexible and powerful for modeling the
complex dependence structures of high-dimensional financial
variables.

A. Partial D Vine Structure Construction

According to Definition 4, it is easy to find out that partial
correlation can be calculated by using the original training
data directly, without the dependence of the knowledge of
assumed structure or bivariate copulas and the corresponding
copula parameters. For the vine structure, a good one should
own the strongest correlation on the first tree and the weakest
correlation on the last tree. By employing partial correlation,
we can employ a bottom-up strategy to construct the D vine
structure, which ensures that the weakest correlation is always
on the last tree and the strongest correlation is on the first tree.
By using partial correlation to construct the D vine structure,
every tree does not depend on the structure of the previous
tree, which is more flexible.

Before building the partial D vine structure, we firstly
review several important properties of D vine for vine structure
construction (see details in [22]).

(1) There are (j − 1) and (j + 1) variables in the
conditioning sets and constraint sets of an edge of
the jth tree respectively;

(2) If two or more nodes have the same constraint sets,
they are the same node;

(3) If variable i is a member of the conditioned set of
an edge e in a regular vine, then i is a member of
the conditioned set of exactly one of the m-child of
e, and the conditioning set of an m-child is a subset
of De.



According to the above properties, two lemmas and one
theorem are introduced to explain the procedure of partial D
vine structure construction.

Lemma1 Let A ⊂ {1, . . . , n} and x1, x2 /∈ A, x1 6= x2
and y1, y2 /∈ A, N1 = {x1, y1 | A \ {y1}} and N2 = {x2, y2 |
A \ {y2}} be nodes of tree Ti of regular vine on n variables;
then N1 and N2 have a common m-child. Moreover if y1 6= y2,
then this common m-child is {y1, y2 | A \ {y1, y2}}.

The proof of Lemma 1 can be referred to the relevant work in
[24], which is omitted here.

Lemma2 For a regular vine on n variables, j = 2, . . . , n−1,
the edge e in Tj has only two constraint sets of m-children in
Tj−1, which are indexed by different variables in a conditioned
set.

Proof: Suppose there are three identical constraint sets
indexed by different variables in a conditioned set. According
to Property (2), nodes with the same constraint sets should
be the same. Based on Property (3), the variables in the
conditioned set is still in the conditioned set of its m-children.
This means that the node has three variables in its conditioned
set, which violates Property (1). Therefore, one edge has only
two constraint sets which are indexed by different variables in
a conditioned set.

According to the above Lemmas and properties of D vine,
we derive a theorem, which is used to build the partial D vine
structure.

Theorem1 Given a specific tree Tj in D vine V , all m-
children of the nodes in the tree Tj−1 (the tree above tree Tj)
are identified except the two m-children on both sides.

Proof: Suppose there are three nodes A, B, C in tree Tj ,
and B is in the middle of A and C. The conditioning sets of A,
B, C are Ca, Cb, Cc respectively, while the conditioned sets
are Da, Db, Dc. In terms of Lemma 2, the two constraint sets
of the m-children of node B are indexed by the two different
variables in Cb. For the two different constraint sets, the two
index variables from Cb are confirmed as belonging to the two
conditioning sets, respectively, and the other variables of the
two conditioning sets are from the conditioning sets of Ca
and Cc according to the definition of D vine. Hence, there
are two combinations for each conditioning set, and if the
two combinations are all accepted for the structure, we can
conclude that Ca is a subset of Db, which implies nodes A
and C are not m-children of the same node in terms of the path
like structure, which conflicts with the postulated conditions
we proposed at first. Therefore, Ca cannot be a subset of Db, as
they have only one mutual element, which is the other variable
in the conditioning set of node B’s corresponding m-child. A
similar conclusion holds for the m-child of nodes B and C.
Thus, m-children of node B are identified given the structure
of chain A, B and C in tree Tj . For the nodes on two sides
of tree Tj , they both have only one identified m-child with the
node linked with them, and the other m-children of the two
nodes do not have identified constraint sets.

Following Theorem 1, we can easily derive a corollary
below:

Corollary1 For a D vine V specification from bottom up
with n variables, there are dn2 e steps to specify the vine
structure and n!

2 possible combinations.

Proof: In terms of Theorem 1, for a D vine following a
bottom-up specification, two variables are chosen in one node
at one time. If the total number of variables is even, there
are n

2 steps to choose all the variables. If the total number of
variables is odd, dn2 e steps are needed to choose all variables.
Given a specific tree Tj , if the following tree Tj+1 is identified,
nodes in Tj have been the expected nodes on both sides.
Suppose there are N variables in all and M variables have been
chosen in the specification process from trees TN−1 to Tj+1,
there are P 2

N−M possible permutations when constructing Tj .
Particularly, the last tree TN−1 only includes two nodes, and
there are C2

N combinations instead. Thus, the total number of
possible combinations for our bottom-up D vine is:

C
2
n · P

2
n−2 · P

2
n−4 · · ·P

2
2

=
n(n− 1)

2
· (n− 2)(n− 3) · (n− 4)(n− 5) · · · 2

=
n(n− 1) · · · 2

2
=

n!

2

(6)

which means the bottom-up vine construction methodology
can cover all possible combinations.

The key step in constructing a D vine structure is to
determine the nodes on both sides of each tree. To keep the
weakest correlation on the bottom and the strongest correlation
on the top, we propose a method to identify the appropriate
nodes for each candidate combination. In this paper, a tree
inverse level is applied to distinguish whether the weakest or
strongest correlation is chosen and then denoted as k. Assume
i is the level of the tree in a vine structure, for trees under the
inverse level (i > k), the appropriate nodes must minimize the
value of function

∑
|ρc;d|. In addition, if trees are beyond the

inverse level (i < k), the appropriate nodes must maximize
the value of function

∑
ln(1− ρ2c;d).

Below we illustrate the construction of an optimal vine
structure. Suppose there is one comprehensive index and six
currencies which are denoted by A, B, C, D, E and F , and the
tree inverse level k is equal to three. The D vine will consist
of 5 trees and 20 nodes in both the D vine structures based
on partial correlation and conditional copula. All the trees and
nodes are shown in Fig. 3. Each node can be allocated to one
bivariate copula or one partial correlation.

For these six variables, there are in total 20 partial correla-
tions. The smallest absolute value of these partial correlations
is chosen to be the edge in tree T5. Suppose the selected partial
correlation in T5 is ρA,F ;B,C,D,E , and the conditioned set and
conditioning set are {A,F} and {B,C,D,E} respectively.
The next step is to choose nodes for T5. In terms of Lemma 2,
the two variables in the conditioned set are allocated to differ-
ent constraint sets with the conditioning set {B,C,D,E}. As a
result, the constraint sets of the two nodes are {A,B,C,D,E}
and {F,B,C,D,E}. There are four partial correlations for
each constraint set. Suppose the combination with the smallest
absolute value of these partial correlations is ρA,E;B,C,D

and ρB,F ;C,E,D, the nodes of T5 are {{A,E}, {B,C,D}}
and {{B,F}, {C,D,E}}. Once T5 is specified, according
to Theorem 1 and Lemma 1, the node in the middle of
T4 is specified as well, which is {{B,E}, {C,D}}, and
the constraint sets for the nodes on both sides of T4 are



Fig. 3. D vine Trees

{A,B,C,D} and {C,D,E, F}. If the combination with the
smallest absolute partial correlation on these two constraint
sets are ρA,D;B,C and ρC,F ;D,E , we get the two border nodes
{{A,D}, {B,C}} and {{C,F}, {D,E}}. For tree T3, if as
assumed the tree broken level is equal to three, we should
choose the combination with the biggest absolute value rather
than the smallest absolute value of partial correlations for
border nodes. Since we only have six variables in this example,
once the structures of T5 to T3 are specified, the whole D vine
structure is specified.

As the parameter k can be chosen from n − 1 to dn2 e,
we can infer dn2 e possible D vine structures depending on the
different values of tree inverse value k.

After building the dn2 e candidate D vines, the next step
is to find the ‘Best’ D vine among these candidates. Wei
[9] presented a method using the determinant of each partial
correlation matrix to choose the best vine structure. However,
this method only considers the strongest correlations on the
top, while ignores the weak correlations at the bottom.

As discussed in Section 2, the ‘Best’ D vine structure will
ensure the strongest correlations in the top tree and the weakest
correlations in the bottom tree. If the structure is only selected
with the maximum value of determinant of all corresponding
partial correlation matrices, the bias will choose the structure
with stronger correlations on the top. Giving a weight to each
tree can enhance the influence of the trees on the top or at the
bottom, and a balanced structure can be selected.

Here a classic model of gas particles in unit volume of
altitude in the gravity field in physics is introduced to simulate
the weight of each tree in the D vine structure. The distribution
equation is given by:

n = n0e
−mgH

KT (7)

where m, H are the mass and height of the particle respec-
tively, g is gravitational acceleration, K is the Boltzmann
Constant, and T is the current temperature.

Following the instructions in the last section, we assume
each level is a unit height and the tree inverse level k is the

Algorithm 1 D Vine Construction and Selection
Require: Observations of n input variables
1: Calculate all values of partial correlation, and then allocate the smallest

absolute value of partial correlation to the node in Tn−1 (Tn−1 is the
bottom tree).

2: for k = 1, . . . , n− 2 do
3: for i = n− 1, . . . , dn

2
e do

4: if Ti > Tk then
5: Find variable combinations for nodes on both sides in tree Ti

which can minimize the function |ρc:d|, where Ti indicates the
ith tree and Tk is tree inverse level tree;

6: else
7: Find variable combinations for nodes on both sides in tree Ti

which can minimize the function of
∑
ln(1− ρ2c:d)

8: end if
9: end for

10: end for
11: There will be n−2 D-Vines as k = 1, . . . , n−2. Calculate the function
−ln(D) of all of the D-Vines based on partial correlation, and choose
the maximum value of the function as the ‘Best’ D vine. (D is calculated
in Equation (10));

12: The ‘Best’ Weighted Partial D vine based on conditional copula corre-
sponds to the D vine based on partial correlation;

13: return The Weighted Partial D vine dependence structure.

zero potential energy level. Thus, the weight of each level
will increase from level k to level n − 1 and level one.
Since the parameters m, g, K and T are constants in a given
environment, Equation (7) can be simplified as follows:

W = e−m0h (8)

where m0 is the parameter and h is the distance from the
level of each tree to the tree inverse level. To restrict the value
of weight for each level in interval [0, 1], we standardize the
weight:

W (h) =


0.5× e−m0(k−h)∑k

i=1 e
−m0(k−i) , h ∈ [1, k];

0.5× e−m0(h−k)∑N−1
i=k+1 e

−m0(i−k)
, h ∈ (k,N − 1].

(9)

where N is the number of variables, k is the tree inverse level,
h is the level of a tree and m0 is a parameter which falls in
interval [0, 1].

The ‘Best’ D vine structure maximizes the value of func-
tion −ln(D), where D is the weighted determinant which is
calculated by using:

D =
∏
i,j

(1−Wiρ
2
i,j;d(i,j)) (10)

where Wi is the corresponding weight and d(i, j) is the
conditioning set excluding variables i and j. The corresponding
conditioned set is i and j.

B. Dependence Structure Truncation

The number of parameters increases exponentially as the
dimension increases. For example, a n-variable partial D vine
structure with bivariate t copula (two-parametric copula) has
n(n− 1) parameters. This may result in a huge computational
burden and be time consuming. Hence, it is necessary to reduce
the number of parameters by truncating the partial D vine
structure. Since conditional independence copula is equal to 1
[5], we consider truncating the partial D vine structure by using



a conditional independence copula to replace those edges that
have a low absolute value of partial correlation. This ensures
that we retain the important dependence indicated by strong
correlations, truncating the useless dependence indicated by
weak correlations. In the truncation procedure, we replace
those edges for which the absolute value of partial correlations
is less than a specified truncation value ρtrun between 0 and
1 (e.g., 0.1), with conditionally independent copula. Then,
based on the specified truncation value ρtrun, we can truncate
the partial D vine. Once the partial D vine tree structure is
identified, the next step is to select bivariate copulas for each
edge in all trees.

C. Bivariate Copula Selection

As discussed in Section 3.3, partial correlation is equal
to its corresponding conditional correlation for the elliptical
family. This means that our partial regular vine tree structure
is built based on an elliptical copula family (i.e., Gaussian
or student t copulas). However, according to the following
theorem, the limitation of partial correlation can be removed
by mapping the partial regular vine tree structure to a typical
regular vine via conditional correlation.

Theorem2 For any regular vine on n variables, there is
one-to-one correspondence between the set of n × n positive
definite correlation matrices and the set of partial correlation
specification of the vine.

The proof of Theorem 2 can be referred to in [23], which
is omitted here. It shows that there is a one-to-one rela-
tionship between the partial regular vine specification and
the correlation matrix, which ensures that our WPVC can
link to the typical conditional correlation based-regular vine
tree structure. A large number of copula family candidates,
bivariate copulas rather than the elliptical copula family can be
chosen. Hence, the limitation can be removed when selecting
bivariate copulas.

D. Marginal Model Specification

To capture the characteristics of stock and exchange rate
markets, such as volatility and fat tail, various ARMA-
GARCH models are used as a marginal distribution in the
WPVC model.

We use the ARMA(1, 1) − GARCH(1, 1) model to
capture the characteristics of comprehensive indices in stock
markets and the AR(1)−GARCH(1, 1) for the exchange rate.
Due to the page limitation, we illustrate the work via choosing
the ARMA(1, 1)−GARCH(1, 1) model, which is defined as
follows:

Xt = C0 + δ1Xt−1 + γ1εt−1 + εt (11)

εt = σtet (12)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (13)

where ω > 0, α1, β1 ≥ 0, α1+β1 < 1. Xt represents the actual
return, εt is the residual error and σt is volatility of return on
day t. Given the value of σ, it is obvious that a small value
of σ2

t−1 will result in a small value of σ2
t and a large value of

σ2
t−1 will result in a large value of σ2

t .

V. PARAMETER ESTIMATION

The maximum log-likelihood method is a typical method
for estimating the parameters of a copula based on a vine
structure. The log-likelihood function is given by:

L(ξ : x) =
n∑

j=1

{
p∑

i=1

lnfi(xi,j ;φi) + ln(c(F1(x1, n), . . . , Fp(xp, n); θ))}

(14)

where ξ = (φ, θ) is a vector covering all parameters of the
marginal distributions φ = (φ1, φ2, . . . , φp) and the copula
parameters θ.

Based on the definition of a copula, we can estimate the
parameters by decomposing Equation (14) into two parts:
marginal distribution log-likelihood function and copula log-
likelihood function.

First, we need to estimate the parameters in marginal
distributions. The marginal distribution log-likelihood is:

Lm(φ : x) =

p∑
i=1

n∑
j=1

lnfi(xi,j ;φi) (15)

Thus, the parameters of the marginal distribution can be
estimated by optimizing the marginal log-likelihood Lm(φ : x)

φ̂ = argmax
φ

Lm(φ : x) (16)

Then, we can estimate the parameters in the copula by
using the copula log-likelihood function

Lc(θ;u, φ) =

p∑
i=1

ln(c(F1(x1, n), . . . , Fp(xp, n); θ)) (17)

In this step, the parameters are estimated by optimizing the
copula log-likelihood Lc(θ;u, φ), which is conditional on the
estimated parameters φ for marginal distributions

θ̂ = argmax
θ
Lc(θ;u, φ) (18)

VI. VALUE AT RISK FOR EVALUATING BUSINESS
PERFORMANCE

To evaluate the model’s business performance, we use the
Value at Risk (VaR), which is a probabilistic metric measuring
market risk and an industrial golden benchmark for measuring
market risk. VaR at the level (1− α) is defined by:

V aRt(1− α) = −inf{c ∈ R : P (rt ≤ c|Infot−1) ≥ (1− α)}
(19)

where Infot−1 represents the past information at time t− 1.
A good model is expected to produce a high quantity of VaR.
Given a set of financial returns, the portfolio return can be
defined as:

rportfolio;t =

n∑
i=1

µiri,t (20)

where ri,t is the financial returns at time t for variables i =
1, . . . , n, and µi is the weight, where

∑n
i=1 µi = 1.

Suppose the current period is t and we want to calculate
the forecasting value of VaR at time t+1 using a training data
set, the process for computing the value of VaR is given as
follows:



(1) Fit the ARMA(1, 1)−GARCH(1, 1) model and use
student t distribution to simulate the residual by using
Equation (11). Then the standardized residuals are
obtained by:

Ẑt,j =
rt,j − η̂j − Ψ̂jrt−1,j − Θ̂j σ̂t−1,j êt−1,j

σ̂t,j
(21)

(2) The ex-ante GARCH variance forecast for j =
1, . . . , n can be computed by using Equations (12)
and (13) as follows:

σ̂2
t+1,j = ω̂j + α̂j ε̂

2
t1,j + β̂j σ̂

2
t,j (22)

(3) The standardized residuals obtained from ARMA−
GARCH are transformed to approximately uniform
data uj = u1,j , . . . , ut,j by using the student t
cumulative distribution function;

(4) Fit WPVC with approximately uniform data uj and
estimate copula parameters;

(5) Use the fitted D vine structure with estimated copula
parameters to simulate a sample for each financial
return variable, i.e.,vt+1,j ;

(6) Transfer the sample to standard residuals by using
the inverse student t cumulative probability distribu-
tion functions with parameters obtained in Step (1),
and obtain the simulated standardised residuals, i.e.,
Ẑt+1,j ;

(7) Calculate the one day ahead forecasting return and
variance for each financial variable by using the
estimated ARMA − GARCH which is calculated
in Step (1), i.e.,

r̂t+1,j = η̂j + Ψ̂jrt,j + Θ̂j ε̂t,j + ε̂t+1,j (23)

VII. EXPERIMENTS ON MULTIPLE MARKETS

A. Data and Marginal Distribution Specification

To evaluate the performance of this model, we use real-
world data, involving 25 financial variables in total. They
include (1) eight exchange rates against USD: EUR, GBP,
CHF, CAD, AUD, JPY, HKD and SGD ; (2) thirteen major
comprehensive indices in the world: ˆIXIC, ˆGSPC, ˆDJI,
ˆSTOXX, ˆFTSE, ˆGDAXI, ˆFCHI, ˆAEX, ˆBF, ˆSSMI, ˆN225,
ˆST and ˆHSI ; (3) three commodity prices: Crude Oil Prices:
Brent, Crude Oil Prices: West Texas Intermediate, and the
Gold Fixing Price in the London Bullion Market; and (4) one
commodity index. These variables are sequentially numbered
from v1 to v25.

The training dataset uses observations from 02/01/1998 to
16/06/2008, with a total of 261 weekly returns (6525 features
per time window). These observations from 06/10/2003 to
23/12/2013, in total 470 weekly returns, are used for out-of-
sample testing. All the data is downloaded from Yahoo Finance
(http://finance.yahoo.com/).

The standardized residuals are transferred to uniform
data by using the empirical probability integral transfor-
mation. Firstly, we used ARMA(2, 1) − GARCH(1, 1),
ARMA(1, 1)−GARCH(1, 1) and AR(1)−GARCH(1, 1)
combined with skewed student t, student t and normal dis-
tribution as error type respectively to fit each raw return.
Then, we chose the best fitted model by considering the
values of Log-likelihood, Akaike information criterion (AIC)

TABLE I. LOG-LIKELIHOOD PERFORMANCE OF WPVC WITH
PARAMETER m0

m0 0.1 0.2 0.3 0.4 0.5
LL 2767.226 2767.226 2929.908 2929.908 3031.563
m0 0.6 0.7 0.8 0.9 1.0
LL 3031.563 3031.563 2929.908 2929.908 2767.226

LL is short for Log-likelihood.

and Schwarz criterion(BIC, also named Bayesian information
criterion) for each model. Finally, the raw returns of vari-
ables v2, v4, v10, v13, v15, v18 are fitted with ARMA(1, 1)−
GARCH(1, 1) with skewed student t error distribution, and
v6s are fitted with ARMA(1, 1)−GARCH(1, 1) models with
student t error distribution. The remain seventeen variables are
fitted with AR(1)−GARCH(1, 1) with skewed student t error
distribution.

The Ljung-Box (LB) test is used to remove the autocor-
relation among these financial returns. In this experiment, the
corresponding p values of the LB test are all greater than the
significant value 0.05.

B. Weighted Partial Vine Copula Tuning and Truncation Anal-
ysis

Typically, the selection of m0 of the WPVC model is
determined by the characteristics of data and domain knowl-
edge. According to the discussion in Section 3.2, m0 is
restricted to interval [0, 1]. Table I shows the performance of
the Log-likelihood of WPVC with parameter m0 from 0.1
to 1.0. The high value of the Log-likelihood indicates good
performance. According to Table I, the WPVC model with
parameter m0 = 0.6 achieves the best performance.

Table II shows the results of the total number of edges
against various truncation values (ρtrun) in the training data
set. If ρtrun = 0, it refers to the non-truncated model, since
no partial correlation is less than zero. The training data set
is used to examine the performance of non-truncated and
truncated models. The results are shown in Fig. 4. These two
figures show the estimated time of the truncated model against
the non-truncated one, and the corresponding Log-likelihood
value. The x axis in Fig. 4 is ρtrun and the dashed line
indicates the nontruncated vine as a reference. We can see that
the estimated time of WPVC decreases significantly as ρtrun
increases. However, the corresponding values of log-likelihood
do not show a significant reduction. It can be concluded
that the truncated model significantly reduces the estimation
time, without losing any important dependencies. Thus, we
choose the truncated partial regular vine ρtrun = 0.05 in this
experiment. WPV C0.05 in the following sections indicates a
truncated model with truncation value 0.05.

C. In-Sample Performance Analysis

We use the following copula-based models in this experi-
ment to cover a wide spectrum of models when evaluating our
new model:

• WPV C0.05: the proposed model with truncation value
(ρtrun = 0.05), built by Algorithm 1;

• WPV C: the proposed model without any truncation,
built by Algorithm 1;
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Fig. 4. Performance Analysis of Truncated WPVC

TABLE II. THE TOTAL NUMBER OF EDGES AGAINST THE
TRUNCATION VALUES

ρtrun 0.01 0.02 0.03 0.04 0.05
Total Number of Edges 269 232 197 180 162

ρtrun 0.06 0.07 0.08 0.09 0.10
Total Number of Edges 145 125 113 101 97

• D STD: D vine copula-based model, built by [5];

• D Ken: D vine copula-based model, built by [25];

• Cvine: Canonical vine-based model, built by [26];

These bivariate copulas are used as edges, including Gaus-
sian, student t, Clayton, Gumbel and Frank. Table 3 presents
the results of the Vuong test with statistical values and the
corresponding p-values in the parenthesis. The results are
shown without correction and with Akaike and Schwarz cor-
rections respectively. The statistical value of the Vuong test
without correction does not indicate which of the WPV C0.05

and WPV C models is better. However, the statistical values
with Akaike and Schwarz corrections suggest that WPV C0.05

is better than WPV C , since WPV C is penalized due
to its large number of parameters. Thus, this indicates that
WPV C0.05 is better than WPV C , since WPV C0.05 uses
less parameters to capture the whole dependence structure.
Compared to the other three models, it shows that WPV C0.05

is the best in all three Vuong tests.

In summary, the in-sample performance tests show that
WPV C0.05 outperforms the other models.

D. Out-of-Sample Performance Analysis

The out-of-sample performance is evaluated by the Value
at Risk (VaR), which a widely used industrial benchmark. The
quality of VaR is judged by backtesting. Typically, backtesting
methods based on Log-likelihood ratios and a null hypothesis
consist of unconditional, independent and conditional coverage
tests. VaR can exhibit all the tests at the general significance
level (0.05). In this part, we introduce the DCC model [11] as
a benchmark, which is a typical model used in the financial
industry. In this experiment, we do not use any machine
learning models since they do not directly support forecasting
VaR.

Table IV presents the statistics of backtesting and the
percentage of exceedance failure. A large p-value suggests
that the results are accurate and reliable. However, the p-value
should at least be greater than 0.05. The percentage of failure
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Fig. 5. The Estimate Time and Log-likelihood

TABLE III. VUONG TEST RESULTS

WPVC D STD D Ken Cvine

No Corr
-0.8168 4.8804 3.4409 7.4617

(-0.4140) (0.0000) (-0.0006) (0.0000)

AIC Corr
0.1925 4.7596 3.3055 7.5042

(-0.8474) (0.0000) (-0.0009) (0.0000)

BIC Corr
1.9875 4.5447 3.0648 7.5798

(-0.0469) (0.0000) (-0.0022) (0.0000)

No Corr, AIC Corr or BIC Corr are short for Vuont test without correction and
with Akaike and Schwarz corrections respectively. The table shows results of Vuong
tests at the 5% level, testing the R1 model (WPV C0.05) against the models R2
(including WPV C , DSTD , DKen and Cvine models). If the statistical value
is greater than 1.96, we favor the model R1. If it is less than −1.96, the model R2
is chosen. If between −1.96 and 1.96, no conclusion is made.

for exceedance should be less than or equal to α. The results in
Table IV show that WPV C0.05 achieves the best performance
of all four models. DCC could not pass the backtesting in
this experiment, which indicates that this model is not useful
for cross-market analysis. The corresponding VaR forecasting
results are shown in Fig. 6. The VaR forecasting generated by
WPV C0.05 accurately predicts the volatility.

VIII. CONCLUSIONS AND FUTURE WORK

Modeling the dependence across financial markets such
as between stock markets and exchange rate markets is very
challenging but necessary for typical business including cross-
market trading and risk management. While copula-based
models have been shown effective in capturing multivariate
correlations, existing models have trouble in effectively ad-
dressing the complex and asymmetrical dependence and high
dimensional issues as well. This work has proposed a weighted
partial vine copula model to handle these issues. The model
has been demonstrated more workable than typical baselines
through an analysis of the complicated structures of portfolios
in trading sixteen years of thirteen comprehensive indices,
eight currency rates and three commodity price indices from
statistical and risk evaluation perspectives. We are further
testing the performance of the weighted partial D vine with
other kinds of high-dimensional financial time series data.



TABLE IV. BACKTESTING RESULTS OF VALUE AT RISK FOR CURRENCIES

1− α POF LRUC LRIC LRCC

WPV C0.05

99%
5 0.032 2.315 2.347

1.08% (0.857) (0.128) (0.309)

95%
26 0.382 0.188 0.570

5.64% (0.536) (0.665) (0.752)

90%
52 1.100 1.582 2.683

11.50% (0.294) (0.208) (0.261)

D STD

99%
9 2.186 2.221 4.408

1.95% (0.139) (0.136) (0.110)

95%
27 0.451 0.133 0.584

5.86% (0.502) (0.715) (0.747)

90%
57 1.363 3.533 4.896

12.36% (0.245) (0.060) (0.086)

D Ken

99%
10 3.376 1.843 5.218

2.17% (0.066) (0.175) (0.074)

95%
27 0.451 0.133 0.584

5.86% (0.502) (0.715) (0.747)

90%
57 1.363 3.533 4.896

12.36% (0.243) (0.060) (0.086)

Cvine

99%
11 4.770 1.439 6.209

2.39% (0.029) (0.230) (0.045)

95%
29 0.662 0.042 0.704

6.29% (0.416) (0.838) (0.703)

90%
59 1.782 4.469 6.251

12.80% (0.182) (0.035) (0.044)

DCC

99%
103 466.082 5.449 471.533

22.34% (0.000) (0.021) (0.000)

95%
133 276.570 15.257 291.827

28.85% (0.000) (0.000) (0.000)

90%
59 180.570 15.333 195.903

32.97% (0.000) (0.000) (0.000)

Here PoF is the percentage of exceedance failure. The first row shows the exceedance
number, and the second row gives the corresponding percentage;
LRUC , LRIC and LRCC are short for the likelihood ratio of unconditional,
independent and conditional coverage respectively. The first row in each cell shows
the statistics value, while the corresponding p-value is given in the corresponding
parenthesis. The critical value of LRUC or LRIC is 3.841, while the critical value
of LRCC is 5.991.
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Fig. 6. The VaR Forecast of Portfolio Returns by Using WPV C0.05
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Université Paris 8, 1959.

[21] H. Joe, Multivariate models and multivariate dependence concepts.
CRC Press, 1997, vol. 73.

[22] D. Kurowicka and R. M. Cooke, Uncertainty analysis with high
dimensional dependence modelling. John Wiley & Sons, 2006.

[23] T. Bedford and R. M. Cooke, “Vines: A new graphical model for
dependent random variables,” Annals of Statistics, pp. 1031–1068, 2002.

[24] D. Kurowicka and H. Joe, Dependence Modeling: Vine Copula Hand-
book. World Scientific, 2011.

[25] C. Almeida, C. Czado, and H. Manner, “Modeling high dimensional
time-varying dependence using d-vine scar models,” arXiv preprint
arXiv:1202.2008, 2012.

[26] J. Dissmann, E. C. Brechmann, C. Czado, and D. Kurowicka, “Selecting
and estimating regular vine copulae and application to financial returns,”
Computational Statistics & Data Analysis, vol. 59, pp. 52–69, 2013.


